本筆記目的是通過tensorflow實現一個兩層的神經網絡。目的是實現一個二次函數的擬合。
如何添加一層網絡
代碼如下:
1
2
3
4
5
6
7
8
9
10
|
def add_layer(inputs, in_size, out_size, activation_function = None ): # add one more layer and return the output of this layer Weights = tf.Variable(tf.random_normal([in_size, out_size])) biases = tf.Variable(tf.zeros([ 1 , out_size]) + 0.1 ) Wx_plus_b = tf.matmul(inputs, Weights) + biases if activation_function is None : outputs = Wx_plus_b else : outputs = activation_function(Wx_plus_b) return outputs |
注意該函數中是xW+b,而不是Wx+b。所以要注意乘法的順序。x應該定義為[類別數量, 數據數量], W定義為[數據類別,類別數量]。
創建一些數據
1
2
3
4
|
# Make up some real data x_data = np.linspace( - 1 , 1 , 300 )[:, np.newaxis] noise = np.random.normal( 0 , 0.05 , x_data.shape) y_data = np.square(x_data) - 0.5 + noise |
numpy的linspace函數能夠產生等差數列。start,stop決定等差數列的起止值。endpoint參數指定包不包括終點值。
1
2
3
|
numpy.linspace(start, stop, num = 50 , endpoint = True , retstep = False , dtype = None )[source] Return evenly spaced numbers over a specified interval. Returns num evenly spaced samples, calculated over the interval [start, stop]. |
noise函數為添加噪聲所用,這樣二次函數的點不會與二次函數曲線完全重合。
numpy的newaxis可以新增一個維度而不需要重新創建相應的shape在賦值,非常方便,如上面的例子中就將x_data從一維變成了二維。
添加占位符,用作輸入
1
2
3
|
# define placeholder for inputs to network xs = tf.placeholder(tf.float32, [ None , 1 ]) ys = tf.placeholder(tf.float32, [ None , 1 ]) |
添加隱藏層和輸出層
1
2
3
4
|
# add hidden layer l1 = add_layer(xs, 1 , 10 , activation_function = tf.nn.relu) # add output layer prediction = add_layer(l1, 10 , 1 , activation_function = None ) |
計算誤差,并用梯度下降使得誤差最小
1
2
3
|
# the error between prediciton and real data loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),reduction_indices = [ 1 ])) train_step = tf.train.GradientDescentOptimizer( 0.1 ).minimize(loss) |
完整代碼如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
|
from __future__ import print_function import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def add_layer(inputs, in_size, out_size, activation_function = None ): # add one more layer and return the output of this layer Weights = tf.Variable(tf.random_normal([in_size, out_size])) biases = tf.Variable(tf.zeros([ 1 , out_size]) + 0.1 ) Wx_plus_b = tf.matmul(inputs, Weights) + biases if activation_function is None : outputs = Wx_plus_b else : outputs = activation_function(Wx_plus_b) return outputs # Make up some real data x_data = np.linspace( - 1 , 1 , 300 )[:, np.newaxis] noise = np.random.normal( 0 , 0.05 , x_data.shape) y_data = np.square(x_data) - 0.5 + noise # define placeholder for inputs to network xs = tf.placeholder(tf.float32, [ None , 1 ]) ys = tf.placeholder(tf.float32, [ None , 1 ]) # add hidden layer l1 = add_layer(xs, 1 , 10 , activation_function = tf.nn.relu) # add output layer prediction = add_layer(l1, 10 , 1 , activation_function = None ) # the error between prediciton and real data loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices = [ 1 ])) train_step = tf.train.GradientDescentOptimizer( 0.1 ).minimize(loss) # important step init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) # plot the real data fig = plt.figure() ax = fig.add_subplot( 1 , 1 , 1 ) ax.scatter(x_data, y_data) plt.ion() plt.show() for i in range ( 1000 ): # training sess.run(train_step, feed_dict = {xs: x_data, ys: y_data}) if i % 50 = = 0 : # to visualize the result and improvement try : ax.lines.remove(lines[ 0 ]) except Exception: pass prediction_value = sess.run(prediction, feed_dict = {xs: x_data}) # plot the prediction lines = ax.plot(x_data, prediction_value, 'r-' , lw = 5 ) plt.pause( 0.1 ) |
運行結果:
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持服務器之家。
原文鏈接:http://blog.csdn.net/qq_30159351/article/details/52639291