1、什么是歸一化:
歸一化就是把一組數(shù)(大于1)化為以1為最大值,0為最小值,其余數(shù)據(jù)按百分比計算的方法。如:1,2,3.,那歸一化后就是:0,0.5,1
2、歸一化步驟:
如:2,4,6
(1)找出一組數(shù)里的最小值和最大值,然后就算最大值和最小值的差值
min = 2; max = 6; r = max - min = 4
(2)數(shù)組中每個數(shù)都減去最小值
2,4,6 變成 0,2,4
(3)再除去差值r
0,2,4 變成 0,0.5,1
就得出歸一化后的數(shù)組了
3、用python 把一個矩陣中每列的數(shù)字歸一化
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
import numpy as np def autoNorm(data): #傳入一個矩陣 mins = data. min ( 0 ) #返回data矩陣中每一列中最小的元素,返回一個列表 maxs = data. max ( 0 ) #返回data矩陣中每一列中最大的元素,返回一個列表 ranges = maxs - mins #最大值列表 - 最小值列表 = 差值列表 normData = np.zeros(np.shape(data)) #生成一個與 data矩陣同規(guī)格的normData全0矩陣,用于裝歸一化后的數(shù)據(jù) row = data.shape[ 0 ] #返回 data矩陣的行數(shù) normData = data - np.tile(mins,(row, 1 )) #data矩陣每一列數(shù)據(jù)都減去每一列的最小值 normData = normData / np.tile(ranges,(row, 1 )) #data矩陣每一列數(shù)據(jù)都除去每一列的差值(差值 = 某列的最大值- 某列最小值) return normData arr = np.array([[ 8 , 7 , 8 ],[ 4 , 3 , 1 ],[ 6 , 9 , 8 ]]) print (autoNorm(arr)) 打印結(jié)果: [[ 1. 0.66666667 1. ] [ 0. 0. 0. ] [ 0.5 1. 1. ]] |
以上這篇對python3 一組數(shù)值的歸一化處理方法詳解就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持服務器之家。
原文鏈接:https://blog.csdn.net/u014453898/article/details/73523997