一区二区三区在线-一区二区三区亚洲视频-一区二区三区亚洲-一区二区三区午夜-一区二区三区四区在线视频-一区二区三区四区在线免费观看

服務器之家:專注于服務器技術及軟件下載分享
分類導航

PHP教程|ASP.NET教程|Java教程|ASP教程|編程技術|正則表達式|C/C++|IOS|C#|Swift|Android|VB|R語言|JavaScript|易語言|vb.net|

服務器之家 - 編程語言 - R語言 - R語言學習RcppEigen進行矩陣運算

R語言學習RcppEigen進行矩陣運算

2022-01-19 14:00Kanny廣小隸 R語言

這篇文章主要為大家介紹了R語言學習如何利用RcppEigen進行矩陣運算的實現方式,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步

前面我們介紹了一些基本的Rcpp的用法:讓你的R代碼更快――Rcpp入門,但用基礎的Rcpp來進行矩陣運算還是非常麻煩,沒有現成的函數來讓我們使用。

這時我們就想到:是否可以調用別的庫來解決矩陣運算的一些問題呢?這就需要我們的RcppEigen包,也就是C++中的Eigen庫。

這些矩陣的運算在進行模擬時會時常遇到,所以可以說是非常重要的一項技能,下面我們就給予一個現有的對矩陣處理的代碼來說明其用法。

 

創建cpp文件

其創建方式可以參考上篇博客:讓你的R代碼更快――Rcpp入門

代碼示例

然后我們定義一個

R語言學習RcppEigen進行矩陣運算

來做矩陣乘法并求其跡(trace)的函數。

// [[Rcpp::depends(RcppEigen)]]
#include <RcppEigen.h>
using namespace Eigen;
using namespace std;

//[[Rcpp::export]]
double myfun (MatrixXd X, MatrixXd Y) {
double Z;

Z = (X.adjoint() * Y).trace();
cout << Z << endl;

return Z;
}

前三行表示載入Eigen庫

// [[Rcpp::depends(RcppEigen)]]
#include <RcppEigen.h>
using namespace Eigen;

里面的轉置函數adjoint(),求跡函數trace(),都需要用到這個庫,如果不使用命名空間Eigen后面庫里面就要這樣用Eigen::adjoint(),Eigen::trace()。

后面我們使用using namespace std;則是因為cout需要用到,這個可以在運行函數的時候展現我們的中間變量,也是一個比較有用的操作,當然如果不需要的話,就可以不用命名變量空間:std。

下面就是我們的函數:

//[[Rcpp::export]]
double myfun (MatrixXd X, MatrixXd Y) {
double Z;

Z = (X.adjoint() * Y).trace();
cout << Z << endl;

return Z;
}

//[[Rcpp::export]]為我們需要導出到R中的時候需要添加,double型的矩陣在Eigen中命名為MatrixXd,整型矩陣為MatrixXi;類似,對應的向量命名方式為:VectorXd與VectorXi。

里面的內容就是我們按照公式敲的函數。

下面我們介紹一些Eigen庫中的其它一些矩陣操作。

 

其他矩陣操作

這部分原文:A simple quickref for Eigen

命名

Matrix<double, 3, 3> A;               // Fixed rows and cols. Same as Matrix3d.
Matrix<double, 3, Dynamic> B;         // Fixed rows, dynamic cols.
Matrix<double, Dynamic, Dynamic> C;   // Full dynamic. Same as MatrixXd.
Matrix<double, 3, 3, RowMajor> E;     // Row major; default is column-major.
Matrix3f P, Q, R;                     // 3x3 float matrix.
Vector3f x, y, z;                     // 3x1 float matrix.
RowVector3f a, b, c;                  // 1x3 float matrix.
VectorXd v;                           // Dynamic column vector of doubles
double s;                            

基礎用法

// Basic usage
// Eigen          // Matlab           // comments
x.size()          // length(x)        // vector size
C.rows()          // size(C,1)        // number of rows
C.cols()          // size(C,2)        // number of columns
x(i)              // x(i+1)           // Matlab is 1-based
C(i,j)            // C(i+1,j+1)       //

A.resize(4, 4);   // Runtime error if assertions are on.
B.resize(4, 9);   // Runtime error if assertions are on.
A.resize(3, 3);   // Ok; size didn't change.
B.resize(3, 9);   // Ok; only dynamic cols changed.
                
A << 1, 2, 3,     // Initialize A. The elements can also be
   4, 5, 6,     // matrices, which are stacked along cols
   7, 8, 9;     // and then the rows are stacked.
B << A, A, A;     // B is three horizontally stacked A's.
A.fill(10);       // Fill A with all 10's.

定義矩陣

// Eigen                                    // Matlab
MatrixXd::Identity(rows,cols)               // eye(rows,cols)
C.setIdentity(rows,cols)                    // C = eye(rows,cols)
MatrixXd::Zero(rows,cols)                   // zeros(rows,cols)
C.setZero(rows,cols)                        // C = zeros(rows,cols)
MatrixXd::Ones(rows,cols)                   // ones(rows,cols)
C.setOnes(rows,cols)                        // C = ones(rows,cols)
MatrixXd::Random(rows,cols)                 // rand(rows,cols)*2-1            // MatrixXd::Random returns uniform random numbers in (-1, 1).
C.setRandom(rows,cols)                      // C = rand(rows,cols)*2-1
VectorXd::LinSpaced(size,low,high)          // linspace(low,high,size)'
v.setLinSpaced(size,low,high)               // v = linspace(low,high,size)'
VectorXi::LinSpaced(((hi-low)/step)+1,      // low:step:hi
                  low,low+step*(size-1))  //

對矩陣的一些基礎操作1

// Matrix slicing and blocks. All expressions listed here are read/write.
// Templated size versions are faster. Note that Matlab is 1-based (a size N
// vector is x(1)...x(N)).
// Eigen                           // Matlab
x.head(n)                          // x(1:n)
x.head<n>()                        // x(1:n)
x.tail(n)                          // x(end - n + 1: end)
x.tail<n>()                        // x(end - n + 1: end)
x.segment(i, n)                    // x(i+1 : i+n)
x.segment<n>(i)                    // x(i+1 : i+n)
P.block(i, j, rows, cols)          // P(i+1 : i+rows, j+1 : j+cols)
P.block<rows, cols>(i, j)          // P(i+1 : i+rows, j+1 : j+cols)
P.row(i)                           // P(i+1, :)
P.col(j)                           // P(:, j+1)
P.leftCols<cols>()                 // P(:, 1:cols)
P.leftCols(cols)                   // P(:, 1:cols)
P.middleCols<cols>(j)              // P(:, j+1:j+cols)
P.middleCols(j, cols)              // P(:, j+1:j+cols)
P.rightCols<cols>()                // P(:, end-cols+1:end)
P.rightCols(cols)                  // P(:, end-cols+1:end)
P.topRows<rows>()                  // P(1:rows, :)
P.topRows(rows)                    // P(1:rows, :)
P.middleRows<rows>(i)              // P(i+1:i+rows, :)
P.middleRows(i, rows)              // P(i+1:i+rows, :)
P.bottomRows<rows>()               // P(end-rows+1:end, :)
P.bottomRows(rows)                 // P(end-rows+1:end, :)
P.topLeftCorner(rows, cols)        // P(1:rows, 1:cols)
P.topRightCorner(rows, cols)       // P(1:rows, end-cols+1:end)
P.bottomLeftCorner(rows, cols)     // P(end-rows+1:end, 1:cols)
P.bottomRightCorner(rows, cols)    // P(end-rows+1:end, end-cols+1:end)
P.topLeftCorner<rows,cols>()       // P(1:rows, 1:cols)
P.topRightCorner<rows,cols>()      // P(1:rows, end-cols+1:end)
P.bottomLeftCorner<rows,cols>()    // P(end-rows+1:end, 1:cols)
P.bottomRightCorner<rows,cols>()   // P(end-rows+1:end, end-cols+1:end)

基礎操作2

// Of particular note is Eigen's swap function which is highly optimized.
// Eigen                           // Matlab
R.row(i) = P.col(j);               // R(i, :) = P(:, j)
R.col(j1).swap(mat1.col(j2));      // R(:, [j1 j2]) = R(:, [j2, j1])
// Views, transpose, etc;
// Eigen                           // Matlab
R.adjoint()                        // R'
R.transpose()                      // R.' or conj(R')       // Read-write
R.diagonal()                       // diag(R)               // Read-write
x.asDiagonal()                     // diag(x)
R.transpose().colwise().reverse()  // rot90(R)              // Read-write
R.rowwise().reverse()              // fliplr(R)
R.colwise().reverse()              // flipud(R)
R.replicate(i,j)                   // repmat(P,i,j)

矩陣基礎運算1

// All the same as Matlab, but matlab doesn't have *= style operators.
// Matrix-vector.  Matrix-matrix.   Matrix-scalar.
y  = M*x;          R  = P*Q;        R  = P*s;
a  = b*M;          R  = P - Q;      R  = s*P;
a *= M;            R  = P + Q;      R  = P/s;
                 R *= Q;          R  = s*P;
                 R += Q;          R *= s;
                 R -= Q;          R /= s;

矩陣基礎運算2

// Vectorized operations on each element independently
// Eigen                       // Matlab
R = P.cwiseProduct(Q);         // R = P .* Q
R = P.array() * s.array();     // R = P .* s
R = P.cwiseQuotient(Q);        // R = P ./ Q
R = P.array() / Q.array();     // R = P ./ Q
R = P.array() + s.array();     // R = P + s
R = P.array() - s.array();     // R = P - s
R.array() += s;                // R = R + s
R.array() -= s;                // R = R - s
R.array() < Q.array();         // R < Q
R.array() <= Q.array();        // R <= Q
R.cwiseInverse();              // 1 ./ R
R.array().inverse();           // 1 ./ R
R.array().sin()                // sin(R)
R.array().cos()                // cos(R)
R.array().pow(s)               // R .^ s
R.array().square()             // R .^ 2
R.array().cube()               // R .^ 3
R.cwiseSqrt()                  // sqrt(R)
R.array().sqrt()               // sqrt(R)
R.array().exp()                // exp(R)
R.array().log()                // log(R)
R.cwiseMax(P)                  // max(R, P)
R.array().max(P.array())       // max(R, P)
R.cwiseMin(P)                  // min(R, P)
R.array().min(P.array())       // min(R, P)
R.cwiseAbs()                   // abs(R)
R.array().abs()                // abs(R)
R.cwiseAbs2()                  // abs(R.^2)
R.array().abs2()               // abs(R.^2)
(R.array() < s).select(P,Q );  // (R < s ? P : Q)
R = (Q.array()==0).select(P,R) // R(Q==0) = P(Q==0)
R = P.unaryExpr(ptr_fun(func)) // R = arrayfun(func, P)   // with: scalar func(const scalar &x);

求最小最大值、跡等

// Reductions.
int r, c;
// Eigen                  // Matlab
R.minCoeff()              // min(R(:))
R.maxCoeff()              // max(R(:))
s = R.minCoeff(&r, &c)    // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i);
s = R.maxCoeff(&r, &c)    // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i);
R.sum()                   // sum(R(:))
R.colwise().sum()         // sum(R)
R.rowwise().sum()         // sum(R, 2) or sum(R')'
R.prod()                  // prod(R(:))
R.colwise().prod()        // prod(R)
R.rowwise().prod()        // prod(R, 2) or prod(R')'
R.trace()                 // trace(R)
R.all()                   // all(R(:))
R.colwise().all()         // all(R)
R.rowwise().all()         // all(R, 2)
R.any()                   // any(R(:))
R.colwise().any()         // any(R)
R.rowwise().any()         // any(R, 2)

點乘等

// Dot products, norms, etc.
// Eigen                  // Matlab
x.norm()                  // norm(x).    Note that norm(R) doesn't work in Eigen.
x.squaredNorm()           // dot(x, x)   Note the equivalence is not true for complex
x.dot(y)                  // dot(x, y)
x.cross(y)                // cross(x, y) Requires #include <Eigen/Geometry>

特征值與特征向量

// Eigenvalue problems
// Eigen                          // Matlab
A.eigenvalues();                  // eig(A);
EigenSolver<Matrix3d> eig(A);     // [vec val] = eig(A)
eig.eigenvalues();                // diag(val)
eig.eigenvectors();               // vec
// For self-adjoint matrices use SelfAdjointEigenSolver<>

形式轉換

Type conversion
// Eigen                  // Matlab
A.cast<double>();         // double(A)
A.cast<float>();          // single(A)
A.cast<int>();            // int32(A)
A.real();                 // real(A)
A.imag();                 // imag(A)
// if the original type equals destination type, no work is done

矩陣初始化0

// Note that for most operations Eigen requires all operands to have the same type:
MatrixXf F = MatrixXf::Zero(3,3);
A += F;                // illegal in Eigen. In Matlab A = A+F is allowed
A += F.cast<double>(); // F converted to double and then added (generally, conversion happens on-the-fly)

Map等操作

// Eigen can map existing memory into Eigen matrices.
float array[3];
Vector3f::Map(array).fill(10);            // create a temporary Map over array and sets entries to 10
int data[4] = {1, 2, 3, 4};
Matrix2i mat2x2(data);                    // copies data into mat2x2
Matrix2i::Map(data) = 2*mat2x2;           // overwrite elements of data with 2*mat2x2
MatrixXi::Map(data, 2, 2) += mat2x2;      // adds mat2x2 to elements of data (alternative syntax if size is not know at compile time)

求解Ax = b

// Solve Ax = b. Result stored in x. Matlab: x = A \ b.
x = A.ldlt().solve(b));  // A sym. p.s.d.    #include <Eigen/Cholesky>
x = A.llt() .solve(b));  // A sym. p.d.      #include <Eigen/Cholesky>
x = A.lu()  .solve(b));  // Stable and fast. #include <Eigen/LU>
x = A.qr()  .solve(b));  // No pivoting.     #include <Eigen/QR>
x = A.svd() .solve(b));  // Stable, slowest. #include <Eigen/SVD>
// .ldlt() -> .matrixL() and .matrixD()
// .llt()  -> .matrixL()
// .lu()   -> .matrixL() and .matrixU()
// .qr()   -> .matrixQ() and .matrixR()
// .svd()  -> .matrixU(), .singularValues(), and .matrixV()

以上就是R語言學習RcppEigen進行矩陣運算的詳細內容,更多關于RcppEigen矩陣運算的資料請關注服務器之家其它相關文章!

原文鏈接:https://blog.csdn.net/weixin_41929524/article/details/81978734

延伸 · 閱讀

精彩推薦
  • R語言如何用R語言繪制散點圖

    如何用R語言繪制散點圖

    這篇文章主要介紹了如何用R語言繪制散點圖,幫助大家更好的理解和學習使用R語言,感興趣的朋友可以了解下...

    菜鳥教程13002021-12-23
  • R語言R語言常量知識點總結

    R語言常量知識點總結

    在本篇文章里小編給大家整理了一篇關于R語言常量知識點總結內容,有興趣的朋友們可以學習分享下。...

    R語言教程網12102021-12-29
  • R語言R語言實現支持向量機SVM應用案例

    R語言實現支持向量機SVM應用案例

    本文主要介紹了R語言實現支持向量機SVM應用案例,文中通過示例代碼介紹的非常詳細,具有一定的參考價值,感興趣的小伙伴們可以參考一下...

    一天_pika5222022-01-18
  • R語言基于R/RStudio中安裝包“無法與服務器建立連接”的解決方案

    基于R/RStudio中安裝包“無法與服務器建立連接”的解決方案

    這篇文章主要介紹了基于R/RStudio中安裝包“無法與服務器建立連接”的解決方案,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧...

    truffle52815052022-01-05
  • R語言R語言中的vector(向量),array(數組)使用總結

    R語言中的vector(向量),array(數組)使用總結

    這篇文章主要介紹了R語言中的vector(向量),array(數組)使用總結,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要...

    A葉子葉來5772021-11-14
  • R語言R語言中qplot()函數的用法說明

    R語言中qplot()函數的用法說明

    這篇文章主要介紹了R語言中qplot()函數的用法說明,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧...

    Jack_丁明12752022-01-05
  • R語言R語言gsub替換字符工具的具體使用

    R語言gsub替換字符工具的具體使用

    這篇文章主要介紹了R語言gsub替換字符工具的具體使用,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友...

    lztttao10372021-12-24
  • R語言R語言讀取xls與xlsx格式文件過程

    R語言讀取xls與xlsx格式文件過程

    這篇文章主要為大家介紹了使用R語言讀取xls與xlsx格式文件的過程步驟,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步早日升職加薪...

    Kanny廣小隸11982022-01-20
主站蜘蛛池模板: 91香蕉小视频 | 雪恋电影完整版免费观看 | 久草热8精品视频在线观看 久草草在线视视频 | 青青青国产 | 国产精品亚洲片在线va | 精品国产美女福利在线 | 久久久免费热线精品频 | 久久精品亚洲国产AV涩情 | 色综合综合 | 精品在线视频一区 | 思敏1一5集国语版免费观看 | 亚洲国产区中文在线观看 | 我的奶头被客人吸的又肿又红 | 福利三区 | 国产乱码一卡二卡3卡四卡 国产乱插 | 国产欧美日韩不卡 | 四虎影视4hutv最新地址在线 | 国产麻豆剧果冻传媒观看免费视频 | 久久人妻少妇嫩草AV无码 | 亚洲欧美韩国日产综合在线 | 果冻传媒在线播放观看228集 | 87影院在线观看视频在线观看 | 亚洲天堂免费看 | 国产真实偷乱视频在线观看 | 极品ts赵恩静和直男激战啪啪 | 91热爆| 出轨娇妻的呻吟1—9 | 果冻传媒在线观看的 | 波多野结衣中文字幕乱七八糟 | 无限在线观看视频大全免费高清 | 夫承子液by免费阅读 | 欧美一区二区三区视视频 | 男男浴室吸乳play | 国产成人一区二区三区影院免费 | 国产在线伊人 | 国产精品成人网红女主播 | 欧美牛逼aa| 久久电影精品久久99久久 | 日日爽 | 无限资源在线观看完整版免费下载 | 免费在线观看小视频 |