1.用try...except...避免因版本不同出現導入錯誤問題
1
2
3
4
5
6
7
8
9
10
11
12
|
try : image_summary = tf.image_summary scalar_summary = tf.scalar_summary histogram_summary = tf.histogram_summary merge_summary = tf.merge_summary SummaryWriter = tf.train.SummaryWriter except : image_summary = tf.summary.image scalar_summary = tf.summary.scalar histogram_summary = tf.summary.histogram merge_summary = tf.summary.merge SummaryWriter = tf.summary.FileWriter |
2.將代碼寫入作用域(作用域不影響代碼的運行)
1
2
3
4
5
6
7
|
with tf.name_scope( 'loss' ): loss = - tf.reduce_sum(y * tf.log(y_conv)) loss_summary = scalar_summary( 'loss' , loss) with tf.name_scope( 'accuracy' ): accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float' )) acc_summary = scalar_summary( 'accuracy' , accuracy) |
3.將要保存的變量存在一起
另外可使用 tf.merge_all_summaries() 或者 tf.summary.merge_all()
1
|
merged = merge_summary([loss_summary, acc_summary]) |
4.定義保存路徑(在sess中完成)
1
|
writer = SummaryWriter( 'save-cnn20/logs' , sess.graph) |
5.訓練模型的同時訓練變量集合merged(在sess中完成,counter為計數,每訓練一次增加1)
1
2
3
|
summary, _ = sess.run([merged, train_step], feed_dict = {x:x_batch, y:y_batch}) counter + = 1 writer.add_summary(summary, counter) |
6.訓練完成后在 save/logs 文件夾里面會有一個events.out.開頭的文件,以下通過終端操作。
1
2
|
cd save tensorboard - - logdir = logs |
終端會出現一個網址,復制到瀏覽器中打開就能看見tensorboard儲存的圖像了。(若打開后無數據或圖像,檢查 --logdir后面的文件夾名字是否給錯了。)
以上這篇使用tensorboard可視化loss和acc的實例就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持服務器之家。
原文鏈接:https://blog.csdn.net/weixin_39674098/article/details/79242073