眾所周知,InnoDB采用IOT(index organization table)即所謂的索引組織表,而葉子節點也就存放了所有的數據,這就意味著,數據總是按照某種順序存儲的。所以問題來了,如果是這樣一個語句,執行起來應該是怎么樣的呢?語句如下:
1
|
select count ( distinct a) from table1; |
列a上有一個索引,那么按照簡單的想法來講,如何掃描呢?很簡單,一條一條的掃描,這樣一來,其實做了一次索引全掃描,效率很差。這種掃描方式會掃描到很多很多的重復的索引,這樣說的話優化的辦法也是很容易想到的:跳過重復的索引就可以了。于是網上能搜到這樣的一個優化的辦法:
1
|
select count (*) from ( select distinct a from table1) t; |
從已經搜索到的資料看,這樣的執行計劃中的extra就從using index變成了using index for group-by。
但是,但是,但是,好在我們現在已經沒有使用5.1的版本了,大家基本上都是5.5以上了,這些現代版本,已經實現了loose index scan:
很好很好,就不需要再用這種奇技淫巧去優化SQL了。
文檔里關于group by這里寫的有點意思,說是最大眾化的辦法就是進行全表掃描并且創建一個臨時表,這樣執行計劃就會難看的要命了,肯定有ALL和using temporary table了。
5.0之后group by在特定條件下可能使用到loose index scan,
1
2
3
4
5
6
|
CREATE TABLE log_table ( id INT NOT NULL PRIMARY KEY , log_machine VARCHAR (20) NOT NULL , log_time DATETIME NOT NULL ) ENGINE=InnoDB DEFAULT CHARSET=utf8; CREATE INDEX ix_log_machine_time ON log_table (log_machine, log_time); |
1
1
2
|
SELECT MAX (log_time) FROM log_table; SELECT MAX (log_time) FROM log_table WHERE log_machine IN ( 'Machine 1' ); |
這兩條sql都只需一次index seek便可返回,源于索引的有序排序,優化器意識到min/max位于最左/右塊,從而避免范圍掃描;
extra顯示Select tables optimized away ;
2
執行計劃type 為range(extra顯示using where; using index),即執行索引范圍掃描,先讀取所有滿足log_machine約束的記錄,然后對其遍歷找出max value;
改進
這滿足group by選擇loose index scan的要求,執行計劃的extra顯示using index for group-by,執行效果等值于
1
2
3
4
|
SELECT MAX (log_time) FROM log_table WHERE log_machine IN (‘Machine 1 ') Union SELECT MAX(log_time) FROM log_table WHERE log_machine IN (‘Machine 2' ) ….. |
即對每個log_machine執行loose index scan,rows從原來的82636下降為16(該表總共1,000,000條記錄)。
Group by何時使用loose index scan?
適用條件:
1 針對單表操作
2 Group by使用索引的最左前綴列
3 只支持聚集函數min()/max()
4 Where條件出現的列必須為=constant操作 , 沒出現在group by中的索引列必須使用constant
5 不支持前綴索引,即部分列索引 ,如index(c1(10))
執行計劃的extra應該顯示using index for group-by
假定表t1有個索引idx(c1,c2,c3)
1
2
3
4
5
6
7
8
|
SELECT c1, c2 FROM t1 GROUP BY c1, c2; SELECT DISTINCT c1, c2 FROM t1; SELECT c1, MIN (c2) FROM t1 GROUP BY c1; SELECT c1, c2 FROM t1 WHERE c1 < const GROUP BY c1, c2; SELECT MAX (c3), MIN (c3), c1, c2 FROM t1 WHERE c2 > const GROUP BY c1, c2; SELECT c2 FROM t1 WHERE c1 < const GROUP BY c1, c2; SELECT c1, c2 FROM t1 WHERE c3 = const GROUP BY c1, c2 SELECT c1, c3 FROM t1 GROUP BY c1, c2; --無法使用松散索引 |
而SELECT c1, c3 FROM t1 where c3= const GROUP BY c1, c2;則可以
緊湊索引掃描tight index scan
Group by在無法使用loose index scan,還可以選擇tight,若兩者都不可選,則只能借助臨時表;
掃描索引時,須讀取所有滿足條件的索引鍵,要么是全索引掃描,要么是范圍索引掃描;
Group by的索引列不連續;或者不是從最左前綴開始,但是where條件里出現最左列;
1
2
|
SELECT c1, c2, c3 FROM t1 WHERE c2 = 'a' GROUP BY c1, c3; SELECT c1, c2, c3 FROM t1 WHERE c1 = 'a' GROUP BY c2, c3; |
5.6的改進
事實上,5.6的index condition push down可以彌補loose index scan缺失帶來的性能損失。
KEY(age,zip)
1
2
3
4
5
6
7
|
mysql> explain SELECT name FROM people WHERE age BETWEEN 18 AND 20 AND zip IN (12345,12346, 12347); +----+-------------+--------+-------+---------------+------+---------+------+-------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+--------+-------+---------------+------+---------+------+-------+-------------+ | 1 | SIMPLE | people | range | age | age | 4 | NULL | 90556 | Using where | +----+-------------+--------+-------+---------------+------+---------+------+-------+-------------+ 1 row in set (0.01 sec) |
根據key_len=4可以推測出sql只用到索引的第一列,即先通過索引查出滿足age (18,20)的行記錄,然后從server層篩選出滿足zip約束的行;
pre-5.6,對于復合索引,只有當引導列使用"="時才有機會在索引掃描時使用到后面的索引列。
1
2
3
4
5
6
7
|
mysql> explain SELECT name FROM people WHERE age=18 AND zip IN (12345,12346, 12347); +----+-------------+--------+-------+---------------+------+---------+------+------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+--------+-------+---------------+------+---------+------+------+-------------+ | 1 | SIMPLE | people | range | age | age | 8 | NULL | 3 | Using where | +----+-------------+--------+-------+---------------+------+---------+------+------+-------------+ 1 row in set (0.00 sec) |
對比一下查詢效率
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
mysql> SELECT sql_no_cache name FROM people WHERE age=19 AND zip IN (12345,12346, 12347); +----------------------------------+ | name | +----------------------------------+ | 888ba838661aff00bbbce114a2a22423 | +----------------------------------+ 1 row in set (0.06 sec) mysql> SELECT SQL_NO_CACHE name FROM people WHERE age BETWEEN 18 AND 22 AND zip IN (12345,12346, 12347); +----------------------------------+ | name | +----------------------------------+ | ed4481336eb9adca222fd404fa15658e | | 888ba838661aff00bbbce114a2a22423 | +----------------------------------+ 2 rows in set (1 min 56.09 sec) |
對于第二條sql,可以使用union改寫,
1
2
3
4
5
6
7
8
9
|
mysql> SELECT name FROM people WHERE age=18 AND zip IN (12345,12346, 12347) -> UNION ALL -> SELECT name FROM people WHERE age=19 AND zip IN (12345,12346, 12347) -> UNION ALL -> SELECT name FROM people WHERE age=20 AND zip IN (12345,12346, 12347) -> UNION ALL -> SELECT name FROM people WHERE age=21 AND zip IN (12345,12346, 12347) -> UNION ALL -> SELECT name FROM people WHERE age=22 AND zip IN (12345,12346, 12347); |
而mysql5.6引入了index condition pushdown,從優化器層面解決了此類問題。