一区二区三区在线-一区二区三区亚洲视频-一区二区三区亚洲-一区二区三区午夜-一区二区三区四区在线视频-一区二区三区四区在线免费观看

腳本之家,腳本語言編程技術及教程分享平臺!
分類導航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服務器之家 - 腳本之家 - Python - 淺談tensorflow中dataset.shuffle和dataset.batch dataset.repeat注意點

淺談tensorflow中dataset.shuffle和dataset.batch dataset.repeat注意點

2020-06-09 10:19青盞 Python

這篇文章主要介紹了淺談tensorflow中dataset.shuffle和dataset.batch dataset.repeat注意點,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧

batch很好理解,就是batch size。注意在一個epoch中最后一個batch大小可能小于等于batch size

dataset.repeat就是俗稱epoch,但在tf中與dataset.shuffle的使用順序可能會導致個epoch的混合

dataset.shuffle就是說維持一個buffer size 大小的 shuffle buffer,圖中所需的每個樣本從shuffle buffer中獲取,取得一個樣本后,就從源數據集中加入一個樣本到shuffle buffer中。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import os
os.environ['CUDA_VISIBLE_DEVICES'] = ""
import numpy as np
import tensorflow as tf
np.random.seed(0)
x = np.random.sample((11,2))
# make a dataset from a numpy array
print(x)
print()
dataset = tf.data.Dataset.from_tensor_slices(x)
dataset = dataset.shuffle(3)
dataset = dataset.batch(4)
dataset = dataset.repeat(2)
 
# create the iterator
iter = dataset.make_one_shot_iterator()
el = iter.get_next()
 
with tf.Session() as sess:
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#源數據集
[[ 0.5488135  0.71518937]
 [ 0.60276338 0.54488318]
 [ 0.4236548  0.64589411]
 [ 0.43758721 0.891773 ]
 [ 0.96366276 0.38344152]
 [ 0.79172504 0.52889492]
 [ 0.56804456 0.92559664]
 [ 0.07103606 0.0871293 ]
 [ 0.0202184  0.83261985]
 [ 0.77815675 0.87001215]
 [ 0.97861834 0.79915856]]
 
# 通過shuffle batch后取得的樣本
[[ 0.4236548  0.64589411]
 [ 0.60276338 0.54488318]
 [ 0.43758721 0.891773 ]
 [ 0.5488135  0.71518937]]
[[ 0.96366276 0.38344152]
 [ 0.56804456 0.92559664]
 [ 0.0202184  0.83261985]
 [ 0.79172504 0.52889492]]
[[ 0.07103606 0.0871293 ]
 [ 0.97861834 0.79915856]
 [ 0.77815675 0.87001215]] #最后一個batch樣本個數為3
[[ 0.60276338 0.54488318]
 [ 0.5488135  0.71518937]
 [ 0.43758721 0.891773 ]
 [ 0.79172504 0.52889492]]
[[ 0.4236548  0.64589411]
 [ 0.56804456 0.92559664]
 [ 0.0202184  0.83261985]
 [ 0.07103606 0.0871293 ]]
[[ 0.77815675 0.87001215]
 [ 0.96366276 0.38344152]
 [ 0.97861834 0.79915856]] #最后一個batch樣本個數為3

1、按照shuffle中設置的buffer size,首先從源數據集取得三個樣本:
shuffle buffer:
[ 0.5488135 0.71518937]
[ 0.60276338 0.54488318]
[ 0.4236548 0.64589411]
2、從buffer中取一個樣本到batch中得:
shuffle buffer:
[ 0.5488135 0.71518937]
[ 0.60276338 0.54488318]
batch:
[ 0.4236548 0.64589411]
3、shuffle buffer不足三個樣本,從源數據集提取一個樣本:
shuffle buffer:
[ 0.5488135 0.71518937]
[ 0.60276338 0.54488318]
[ 0.43758721 0.891773 ]
4、從buffer中取一個樣本到batch中得:
shuffle buffer:
[ 0.5488135 0.71518937]
[ 0.43758721 0.891773 ]
batch:
[ 0.4236548 0.64589411]
[ 0.60276338 0.54488318]
5、如此反復。這就意味中如果shuffle 的buffer size=1,數據集不打亂。如果shuffle 的buffer size=數據集樣本數量,隨機打亂整個數據集

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os
os.environ['CUDA_VISIBLE_DEVICES'] = ""
import numpy as np
import tensorflow as tf
np.random.seed(0)
x = np.random.sample((11,2))
# make a dataset from a numpy array
print(x)
print()
dataset = tf.data.Dataset.from_tensor_slices(x)
dataset = dataset.shuffle(1)
dataset = dataset.batch(4)
dataset = dataset.repeat(2)
 
# create the iterator
iter = dataset.make_one_shot_iterator()
el = iter.get_next()
 
with tf.Session() as sess:
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
 
[[ 0.5488135  0.71518937]
 [ 0.60276338 0.54488318]
 [ 0.4236548  0.64589411]
 [ 0.43758721 0.891773 ]
 [ 0.96366276 0.38344152]
 [ 0.79172504 0.52889492]
 [ 0.56804456 0.92559664]
 [ 0.07103606 0.0871293 ]
 [ 0.0202184  0.83261985]
 [ 0.77815675 0.87001215]
 [ 0.97861834 0.79915856]]
 
[[ 0.5488135  0.71518937]
 [ 0.60276338 0.54488318]
 [ 0.4236548  0.64589411]
 [ 0.43758721 0.891773 ]]
[[ 0.96366276 0.38344152]
 [ 0.79172504 0.52889492]
 [ 0.56804456 0.92559664]
 [ 0.07103606 0.0871293 ]]
[[ 0.0202184  0.83261985]
 [ 0.77815675 0.87001215]
 [ 0.97861834 0.79915856]]
[[ 0.5488135  0.71518937]
 [ 0.60276338 0.54488318]
 [ 0.4236548  0.64589411]
 [ 0.43758721 0.891773 ]]
[[ 0.96366276 0.38344152]
 [ 0.79172504 0.52889492]
 [ 0.56804456 0.92559664]
 [ 0.07103606 0.0871293 ]]
[[ 0.0202184  0.83261985]
 [ 0.77815675 0.87001215]
 [ 0.97861834 0.79915856]]

注意如果repeat在shuffle之前使用:

官方說repeat在shuffle之前使用能提高性能,但模糊了數據樣本的epoch關系

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os
os.environ['CUDA_VISIBLE_DEVICES'] = ""
import numpy as np
import tensorflow as tf
np.random.seed(0)
x = np.random.sample((11,2))
# make a dataset from a numpy array
print(x)
print()
dataset = tf.data.Dataset.from_tensor_slices(x)
dataset = dataset.repeat(2)
dataset = dataset.shuffle(11)
dataset = dataset.batch(4)
 
# create the iterator
iter = dataset.make_one_shot_iterator()
el = iter.get_next()
 
with tf.Session() as sess:
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
 
[[ 0.5488135  0.71518937]
 [ 0.60276338 0.54488318]
 [ 0.4236548  0.64589411]
 [ 0.43758721 0.891773 ]
 [ 0.96366276 0.38344152]
 [ 0.79172504 0.52889492]
 [ 0.56804456 0.92559664]
 [ 0.07103606 0.0871293 ]
 [ 0.0202184  0.83261985]
 [ 0.77815675 0.87001215]
 [ 0.97861834 0.79915856]]
 
[[ 0.56804456 0.92559664]
 [ 0.5488135  0.71518937]
 [ 0.60276338 0.54488318]
 [ 0.07103606 0.0871293 ]]
[[ 0.96366276 0.38344152]
 [ 0.43758721 0.891773 ]
 [ 0.43758721 0.891773 ]
 [ 0.77815675 0.87001215]]
[[ 0.79172504 0.52889492#出現相同樣本出現在同一個batch中
 [ 0.79172504 0.52889492]
 [ 0.60276338 0.54488318]
 [ 0.4236548  0.64589411]]
[[ 0.07103606 0.0871293 ]
 [ 0.4236548  0.64589411]
 [ 0.96366276 0.38344152]
 [ 0.5488135  0.71518937]]
[[ 0.97861834 0.79915856]
 [ 0.0202184  0.83261985]
 [ 0.77815675 0.87001215]
 [ 0.56804456 0.92559664]]
[[ 0.0202184  0.83261985]
 [ 0.97861834 0.79915856]]     #可以看到最后個batch為2,而前面都是4

使用案例:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False):
  print('Parsing', filenames)
  def decode_libsvm(line):
    #columns = tf.decode_csv(value, record_defaults=CSV_COLUMN_DEFAULTS)
    #features = dict(zip(CSV_COLUMNS, columns))
    #labels = features.pop(LABEL_COLUMN)
    columns = tf.string_split([line], ' ')
    labels = tf.string_to_number(columns.values[0], out_type=tf.float32)
    splits = tf.string_split(columns.values[1:], ':')
    id_vals = tf.reshape(splits.values,splits.dense_shape)
    feat_ids, feat_vals = tf.split(id_vals,num_or_size_splits=2,axis=1)
    feat_ids = tf.string_to_number(feat_ids, out_type=tf.int32)
    feat_vals = tf.string_to_number(feat_vals, out_type=tf.float32)
    #feat_ids = tf.reshape(feat_ids,shape=[-1,FLAGS.field_size])
    #for i in range(splits.dense_shape.eval()[0]):
    #  feat_ids.append(tf.string_to_number(splits.values[2*i], out_type=tf.int32))
    #  feat_vals.append(tf.string_to_number(splits.values[2*i+1]))
    #return tf.reshape(feat_ids,shape=[-1,field_size]), tf.reshape(feat_vals,shape=[-1,field_size]), labels
    return {"feat_ids": feat_ids, "feat_vals": feat_vals}, labels
 
  # Extract lines from input files using the Dataset API, can pass one filename or filename list
  dataset = tf.data.TextLineDataset(filenames).map(decode_libsvm, num_parallel_calls=10).prefetch(500000# multi-thread pre-process then prefetch
 
  # Randomizes input using a window of 256 elements (read into memory)
  if perform_shuffle:
    dataset = dataset.shuffle(buffer_size=256)
 
  # epochs from blending together.
  dataset = dataset.repeat(num_epochs)
  dataset = dataset.batch(batch_size) # Batch size to use
 
  #return dataset.make_one_shot_iterator()
  iterator = dataset.make_one_shot_iterator()
  batch_features, batch_labels = iterator.get_next()
  #return tf.reshape(batch_ids,shape=[-1,field_size]), tf.reshape(batch_vals,shape=[-1,field_size]), batch_labels
  return batch_features, batch_labels

到此這篇關于淺談tensorflow中dataset.shuffle和dataset.batch dataset.repeat注意點的文章就介紹到這了,更多相關tensorflow中dataset.shuffle和dataset.batch dataset.repeat內容請搜索服務器之家以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持服務器之家! 

原文鏈接:https://blog.csdn.net/qq_16234613/article/details/81703228

延伸 · 閱讀

精彩推薦
主站蜘蛛池模板: 亚洲国产欧美在线人成 | 亚洲女人国产香蕉久久精品 | 女明星放荡高h日常生活 | 动漫美女胸被狂揉扒开吃奶动态图 | 好爽好舒服视频 | 十八女下面流水不遮免费 | 白丝美女用胸伺候主人 | 97福利社 | 国产探花在线观看 | 日本免费在线观看 | 果冻传媒和91制片厂网站软件 | 欧美视频一区二区三区四区 | 艹艹逼| 成人免费毛片一区二区三区 | 天堂樱桃bt在线www | 欧美大陆日韩一区二区三区 | 黑帮少爷爱上我第8集在线观看 | 不卡一区二区三区卡 | 糖心在线观看网 | 女人把扒开给男人爽 | 国内久久婷婷综合欲色啪 | 欧美在线一级片 | 日韩中文字幕网站 | 亚洲一二三区久久五月天婷婷 | 天天做天天爽天天谢 | 午夜AV国产欧美亚洲高清在线 | 精品成人一区二区三区免费视频 | 99色在线观看 | 国产精品一区三区 | 日韩亚洲一区中文字幕在线 | 欧美成人中文字幕在线看 | 4p高h三男一女 | 色综合天天网 | 亚洲精品福利你懂 | 韩国日本在线观看 | 免费观看欧美成人h | 国产一区二区三区在线看片 | 999资源站 | 国产精品视频人人做人人爱 | 精品久久成人免费第三区 | 奇米色88欧美一区二区 |