一区二区三区在线-一区二区三区亚洲视频-一区二区三区亚洲-一区二区三区午夜-一区二区三区四区在线视频-一区二区三区四区在线免费观看

腳本之家,腳本語言編程技術及教程分享平臺!
分類導航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服務器之家 - 腳本之家 - Python - keras的三種模型實現與區別說明

keras的三種模型實現與區別說明

2020-07-04 09:30NanciZhao Python

這篇文章主要介紹了keras的三種模型實現與區別說明,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧

前言

一、keras提供了三種定義模型的方式

1. 序列式(Sequential) API

序貫(sequential)API允許你為大多數問題逐層堆疊創建模型。雖然說對很多的應用來說,這樣的一個手法很簡單也解決了很多深度學習網絡結構的構建,但是它也有限制-它不允許你創建模型有共享層或有多個輸入或輸出的網絡。

2. 函數式(Functional) API

Keras函數式(functional)API為構建網絡模型提供了更為靈活的方式。

它允許你定義多個輸入或輸出模型以及共享圖層的模型。除此之外,它允許你定義動態(ad-hoc)的非周期性(acyclic)網絡圖。

模型是通過創建層的實例(layer instances)并將它們直接相互連接成對來定義的,然后定義一個模型(model)來指定那些層是要作為這個模型的輸入和輸出。

3.子類(Subclassing) API

補充知識:keras pytorch 構建模型對比

使用CIFAR10數據集,用三種框架構建Residual_Network作為例子,比較框架間的異同。

數據集格式

pytorch的數據集格式

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import torch
import torch.nn as nn
import torchvision
 
# Download and construct CIFAR-10 dataset.
train_dataset = torchvision.datasets.CIFAR10(root='../../data/',
                       train=True,
                       download=True)
 
# Fetch one data pair (read data from disk).
image, label = train_dataset[0]
print (image.size()) # torch.Size([3, 32, 32])
print (label) # 6
print (train_dataset.data.shape) # (50000, 32, 32, 3)
# type(train_dataset.targets)==list
print (len(train_dataset.targets)) # 50000
 
# Data loader (this provides queues and threads in a very simple way).
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                      batch_size=64,
                      shuffle=True)
"""
# 演示DataLoader返回的數據結構
# When iteration starts, queue and thread start to load data from files.
data_iter = iter(train_loader)
 
# Mini-batch images and labels.
images, labels = data_iter.next()
print(images.shape) # torch.Size([100, 3, 32, 32])
print(labels.shape)
# torch.Size([100]) 可見經過DataLoader后,labels由list變成了pytorch內置的tensor格式
"""
# 一般使用的話是下面這種
# Actual usage of the data loader is as below.
for images, labels in train_loader:
  # Training code should be written here.
  pass

keras的數據格式

?
1
2
3
4
5
6
import keras
from keras.datasets import cifar10
 
(train_x, train_y) , (test_x, test_y) = cifar10.load_data()
print(train_x.shape) # ndarray 類型: (50000, 32, 32, 3)
print(train_y.shape) # (50000, 1)

輸入網絡的數據格式不同

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
"""
1: pytorch 都是內置torch.xxTensor輸入網絡,而keras的則是原生ndarray類型
2: 對于multi-class的其中一種loss,即cross-entropy loss 而言,
  pytorch的api為 CorssEntropyLoss, 但y_true不能用one-hoe編碼!這與keras,tensorflow     都不同。tensorflow相應的api為softmax_cross_entropy
  他們的api都僅限于multi-class classification
3*: 其實上面提到的api都屬于categorical cross-entropy loss,
  又叫 softmax loss,是函數內部先進行了 softmax 激活,再經過cross-entropy loss。
  這個loss是cross-entropy loss的變種,
  cross-entropy loss又叫logistic loss 或 multinomial logistic loss。
  實現這種loss的函數不包括激活函數,需要自定義。
  pytorch對應的api為BCEloss(僅限于 binary classification),
  tensorflow 對應的api為 log_loss。
  cross-entropy loss的第二個變種是 binary cross-entropy loss 又叫 sigmoid cross-  entropy loss。
  函數內部先進行了sigmoid激活,再經過cross-entropy loss。
  pytorch對應的api為BCEWithLogitsLoss,
  tensorflow對應的api為sigmoid_cross_entropy
"""
 
# pytorch
criterion = nn.CrossEntropyLoss()
...
for epoch in range(num_epochs):
  for i, (images, labels) in enumerate(train_loader):
    images = images.to(device)
    labels = labels.to(device)
    
    # Forward pass
    outputs = model(images)
    # 對于multi-class cross-entropy loss
    # 輸入y_true不需要one-hot編碼
    loss = criterion(outputs, labels)
...
 
# keras
# 對于multi-class cross-entropy loss
# 輸入y_true需要one-hot編碼
train_y = keras.utils.to_categorical(train_y,10)
...
model.fit_generator(datagen.flow(train_x, train_y, batch_size=128),
          validation_data=[test_x,test_y],
          epochs=epochs,steps_per_epoch=steps_per_epoch, verbose=1)
...

整體流程

keras 流程

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
model = myModel()
model.compile(optimizer=Adam(0.001),loss="categorical_crossentropy",metrics=["accuracy"])
model.fit_generator(datagen.flow(train_x, train_y, batch_size=128),
          validation_data=[test_x,test_y],
          epochs=epochs,steps_per_epoch=steps_per_epoch, verbose=1, workers=4)
#Evaluate the accuracy of the test dataset
accuracy = model.evaluate(x=test_x,y=test_y,batch_size=128)
# 保存整個網絡
model.save("cifar10model.h5")
"""
# https://blog.csdn.net/jiandanjinxin/article/details/77152530
# 使用
# keras.models.load_model("cifar10model.h5")
 
# 只保存architecture
# json_string = model.to_json()
# open('my_model_architecture.json','w').write(json_string) 
# 使用
# from keras.models import model_from_json
#model = model_from_json(open('my_model_architecture.json').read())
 
# 只保存weights
# model.save_weights('my_model_weights.h5')
#需要在代碼中初始化一個完全相同的模型
# model.load_weights('my_model_weights.h5')
#需要加載權重到不同的網絡結構(有些層一樣)中,例如fine-tune或transfer-learning,可以通過層名字來加載模型
# model.load_weights('my_model_weights.h5', by_name=True)
"""

pytorch 流程

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
model = myModel()
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
 
for epoch in range(num_epochs):
  for i, (images, labels) in enumerate(train_loader):
    images = images.to(device)
    labels = labels.to(device)
    
    # Forward pass
    outputs = model(images)
    loss = criterion(outputs, labels)
    
    # Backward and optimize
        # 將上次迭代計算的梯度值清0
    optimizer.zero_grad()
    # 反向傳播,計算梯度值
    loss.backward()
    # 更新權值參數
    optimizer.step()
    
# model.eval(),讓model變成測試模式,對dropout和batch normalization的操作在訓練和測試的時候是不一樣的
# eval()時,pytorch會自動把BN和DropOut固定住,不會取平均,而是用訓練好的值。
# 不然的話,一旦test的batch_size過小,很容易就會被BN層導致生成圖片顏色失真極大。
model.eval()
with torch.no_grad():
  correct = 0
  total = 0
  for images, labels in test_loader:
    images = images.to(device)
    labels = labels.to(device)
    outputs = model(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum().item()
 
  print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))
 
# Save the model checkpoint
# 這是只保存了weights
torch.save(model.state_dict(), 'resnet.ckpt')
"""
# 使用
# myModel.load_state_dict(torch.load('params.ckpt'))
# 若想保存整個網絡(architecture + weights)
# torch.save(resnet, 'model.ckpt')
# 使用
#model = torch.load('model.ckpt')
"""

對比流程

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#https://blog.csdn.net/dss_dssssd/article/details/83892824
"""
1: 準備數據(注意數據格式不同)
2: 定義網絡結構model
3: 定義損失函數
4: 定義優化算法 optimizer
5: 訓練-keras
    5.1:編譯模型(傳入loss function和optimizer等)
    5.2:訓練模型(fit or fit_generator,傳入數據)
5: 訓練-pytorch
迭代訓練:
    5.1:準備好tensor形式的輸入數據和標簽(可選)
    5.2:前向傳播計算網絡輸出output和計算損失函數loss
    5.3:反向傳播更新參數
        以下三句話一句也不能少:
        5.3.1:將上次迭代計算的梯度值清0
            optimizer.zero_grad()
        5.3.2:反向傳播,計算梯度值
            loss.backward()
        5.3.3:更新權值參數
            optimizer.step()
6: 在測試集上測試-keras
    model.evaluate
6: 在測試集上測試-pytorch
  遍歷測試集,自定義metric
7: 保存網絡(可選) 具體實現參考上面代碼
"""

構建網絡

對比網絡

1、對于keras,不需要input_channels,函數內部會自動獲得,而pytorch則需要顯示聲明input_channels

2、對于pytorch Conv2d需要指定padding,而keras的則是same和valid兩種選項(valid即padding=0)

3、keras的Flatten操作可以視作pytorch中的view

4、keras的dimension一般順序是(H, W, C) (tensorflow 為backend的話),而pytorch的順序則是( C, H, W)

5、具體的變換可以參照下方,但由于沒有學過pytorch,keras也剛入門,不能保證正確,日后學的更深入了之后再來看看。

pytorch 構建Residual-network

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
 
 
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
 
# Hyper-parameters
num_epochs = 80
learning_rate = 0.001
 
# Image preprocessing modules
transform = transforms.Compose([
  transforms.Pad(4),
  transforms.RandomHorizontalFlip(),
  transforms.RandomCrop(32),
  transforms.ToTensor()])
 
# CIFAR-10 dataset
# train_dataset.data.shape
#Out[31]: (50000, 32, 32, 3)
# train_dataset.targets list
# len(list)=5000
train_dataset = torchvision.datasets.CIFAR10(root='./data/',
                       train=True,
                       transform=transform,
                       download=True)
 
test_dataset = torchvision.datasets.CIFAR10(root='../../data/',
                      train=False,
                      transform=transforms.ToTensor())
 
# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                      batch_size=100,
                      shuffle=True)
 
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                     batch_size=100,
                     shuffle=False)
 
# 3x3 convolution
def conv3x3(in_channels, out_channels, stride=1):
  return nn.Conv2d(in_channels, out_channels, kernel_size=3,
           stride=stride, padding=1, bias=False)
 
# Residual block
class ResidualBlock(nn.Module):
  def __init__(self, in_channels, out_channels, stride=1, downsample=None):
    super(ResidualBlock, self).__init__()
    self.conv1 = conv3x3(in_channels, out_channels, stride)
    self.bn1 = nn.BatchNorm2d(out_channels)
    self.relu = nn.ReLU(inplace=True)
    self.conv2 = conv3x3(out_channels, out_channels)
    self.bn2 = nn.BatchNorm2d(out_channels)
    self.downsample = downsample
    
  def forward(self, x):
    residual = x
    out = self.conv1(x)
    out = self.bn1(out)
    out = self.relu(out)
    out = self.conv2(out)
    out = self.bn2(out)
    if self.downsample:
      residual = self.downsample(x)
    out += residual
    out = self.relu(out)
    return out
 
# ResNet
class ResNet(nn.Module):
  def __init__(self, block, layers, num_classes=10):
    super(ResNet, self).__init__()
    self.in_channels = 16
    self.conv = conv3x3(3, 16)
    self.bn = nn.BatchNorm2d(16)
    self.relu = nn.ReLU(inplace=True)
    self.layer1 = self.make_layer(block, 16, layers[0])
    self.layer2 = self.make_layer(block, 32, layers[1], 2)
    self.layer3 = self.make_layer(block, 64, layers[2], 2)
    self.avg_pool = nn.AvgPool2d(8)
    self.fc = nn.Linear(64, num_classes)
    
  def make_layer(self, block, out_channels, blocks, stride=1):
    downsample = None
    if (stride != 1) or (self.in_channels != out_channels):
      downsample = nn.Sequential(
        conv3x3(self.in_channels, out_channels, stride=stride),
        nn.BatchNorm2d(out_channels))
    layers = []
    layers.append(block(self.in_channels, out_channels, stride, downsample))
    self.in_channels = out_channels
    for i in range(1, blocks):
      layers.append(block(out_channels, out_channels))
    # [*[1,2,3]]
    # Out[96]: [1, 2, 3]
    return nn.Sequential(*layers)
  
  def forward(self, x):
    out = self.conv(x) # out.shape:torch.Size([100, 16, 32, 32])
    out = self.bn(out)
    out = self.relu(out)
    out = self.layer1(out)
    out = self.layer2(out)
    out = self.layer3(out)
    out = self.avg_pool(out)
    out = out.view(out.size(0), -1)
    out = self.fc(out)
    return out
  
model = ResNet(ResidualBlock, [2, 2, 2]).to(device)
 
# pip install torchsummary or
# git clone https://github.com/sksq96/pytorch-summary
from torchsummary import summary
# input_size=(C,H,W)
summary(model, input_size=(3, 32, 32))
 
images,labels = iter(train_loader).next()
outputs = model(images)
 
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
 
# For updating learning rate
def update_lr(optimizer, lr): 
  for param_group in optimizer.param_groups:
    param_group['lr'] = lr
 
# Train the model
total_step = len(train_loader)
curr_lr = learning_rate
for epoch in range(num_epochs):
  for i, (images, labels) in enumerate(train_loader):
    images = images.to(device)
    labels = labels.to(device)
    
    # Forward pass
    outputs = model(images)
    loss = criterion(outputs, labels)
    
    # Backward and optimize
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    
    if (i+1) % 100 == 0:
      print ("Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}"
          .format(epoch+1, num_epochs, i+1, total_step, loss.item()))
 
  # Decay learning rate
  if (epoch+1) % 20 == 0:
    curr_lr /= 3
    update_lr(optimizer, curr_lr)
 
# Test the model
model.eval()
with torch.no_grad():
  correct = 0
  total = 0
  for images, labels in test_loader:
    images = images.to(device)
    labels = labels.to(device)
    outputs = model(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum().item()
 
  print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))
 
# Save the model checkpoint
torch.save(model.state_dict(), 'resnet.ckpt')

keras 對應的網絡構建部分

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
"""
#pytorch
def conv3x3(in_channels, out_channels, stride=1):
  return nn.Conv2d(in_channels, out_channels, kernel_size=3,
           stride=stride, padding=1, bias=False)
"""
 
def conv3x3(x,out_channels, stride=1):
  #out = spatial_2d_padding(x,padding=((1, 1), (1, 1)), data_format="channels_last")
  return Conv2D(filters=out_channels, kernel_size=[3,3], strides=(stride,stride),padding="same")(x)
 
"""
# pytorch
# Residual block
class ResidualBlock(nn.Module):
  def __init__(self, in_channels, out_channels, stride=1, downsample=None):
    super(ResidualBlock, self).__init__()
    self.conv1 = conv3x3(in_channels, out_channels, stride)
    self.bn1 = nn.BatchNorm2d(out_channels)
    self.relu = nn.ReLU(inplace=True)
    self.conv2 = conv3x3(out_channels, out_channels)
    self.bn2 = nn.BatchNorm2d(out_channels)
    self.downsample = downsample
    
  def forward(self, x):
    residual = x
    out = self.conv1(x)
    out = self.bn1(out)
    out = self.relu(out)
    out = self.conv2(out)
    out = self.bn2(out)
    if self.downsample:
      residual = self.downsample(x)
    out += residual
    out = self.relu(out)
    return out
"""
def ResidualBlock(x, out_channels, stride=1, downsample=False):
  residual = x
  out = conv3x3(x, out_channels,stride)
  out = BatchNormalization()(out)
  out = Activation("relu")(out)
  out = conv3x3(out, out_channels)
  out = BatchNormalization()(out)
  if downsample:
    residual = conv3x3(residual, out_channels, stride=stride)
    residual = BatchNormalization()(residual)
  out = keras.layers.add([residual,out])
  out = Activation("relu")(out)
  return out
"""
#pytorch
def make_layer(self, block, out_channels, blocks, stride=1):
    downsample = None
    if (stride != 1) or (self.in_channels != out_channels):
      downsample = nn.Sequential(
        conv3x3(self.in_channels, out_channels, stride=stride),
        nn.BatchNorm2d(out_channels))
    layers = []
    layers.append(block(self.in_channels, out_channels, stride, downsample))
    self.in_channels = out_channels
    for i in range(1, blocks):
      layers.append(block(out_channels, out_channels))
    # [*[1,2,3]]
    # Out[96]: [1, 2, 3]
    return nn.Sequential(*layers)
"""
def make_layer(x, out_channels, blocks, stride=1):
    # tf backend: x.output_shape[-1]==out_channels
    #print("x.shape[-1] ",x.shape[-1])
    downsample = False
    if (stride != 1) or (out_channels != x.shape[-1]):
      downsample = True
    out = ResidualBlock(x, out_channels, stride, downsample)
    for i in range(1, blocks):
      out = ResidualBlock(out, out_channels)
    return out
 
def KerasResidual(input_shape):
  images = Input(input_shape)
  out = conv3x3(images,16) # out.shape=(None, 32, 32, 16)
  out = BatchNormalization()(out)
  out = Activation("relu")(out)
  layer1_out = make_layer(out, 16, layers[0])
  layer2_out = make_layer(layer1_out, 32, layers[1], 2)
  layer3_out = make_layer(layer2_out, 64, layers[2], 2)
  out = AveragePooling2D(pool_size=(8,8))(layer3_out)
  out = Flatten()(out)
  # pytorch 的nn.CrossEntropyLoss()會首先執行softmax計算
  # 當換成keras時,沒有tf類似的softmax_cross_entropy
  # 自帶的categorical_crossentropy不會執行激活操作,因此得在Dense層加上activation
  out = Dense(units=10, activation="softmax")(out)
  model = Model(inputs=images,outputs=out)
  return model
 
input_shape=(32, 32, 3)
layers=[2, 2, 2]
mymodel = KerasResidual(input_shape)
mymodel.summary()

pytorch model summary

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
----------------------------------------------------------------
    Layer (type)        Output Shape     Param #
================================================================
      Conv2d-1      [-1, 16, 32, 32]       432
    BatchNorm2d-2      [-1, 16, 32, 32]       32
       ReLU-3      [-1, 16, 32, 32]        0
      Conv2d-4      [-1, 16, 32, 32]      2,304
    BatchNorm2d-5      [-1, 16, 32, 32]       32
       ReLU-6      [-1, 16, 32, 32]        0
      Conv2d-7      [-1, 16, 32, 32]      2,304
    BatchNorm2d-8      [-1, 16, 32, 32]       32
       ReLU-9      [-1, 16, 32, 32]        0
  ResidualBlock-10      [-1, 16, 32, 32]        0
      Conv2d-11      [-1, 16, 32, 32]      2,304
   BatchNorm2d-12      [-1, 16, 32, 32]       32
       ReLU-13      [-1, 16, 32, 32]        0
      Conv2d-14      [-1, 16, 32, 32]      2,304
   BatchNorm2d-15      [-1, 16, 32, 32]       32
       ReLU-16      [-1, 16, 32, 32]        0
  ResidualBlock-17      [-1, 16, 32, 32]        0
      Conv2d-18      [-1, 32, 16, 16]      4,608
   BatchNorm2d-19      [-1, 32, 16, 16]       64
       ReLU-20      [-1, 32, 16, 16]        0
      Conv2d-21      [-1, 32, 16, 16]      9,216
   BatchNorm2d-22      [-1, 32, 16, 16]       64
      Conv2d-23      [-1, 32, 16, 16]      4,608
   BatchNorm2d-24      [-1, 32, 16, 16]       64
       ReLU-25      [-1, 32, 16, 16]        0
  ResidualBlock-26      [-1, 32, 16, 16]        0
      Conv2d-27      [-1, 32, 16, 16]      9,216
   BatchNorm2d-28      [-1, 32, 16, 16]       64
       ReLU-29      [-1, 32, 16, 16]        0
      Conv2d-30      [-1, 32, 16, 16]      9,216
   BatchNorm2d-31      [-1, 32, 16, 16]       64
       ReLU-32      [-1, 32, 16, 16]        0
  ResidualBlock-33      [-1, 32, 16, 16]        0
      Conv2d-34       [-1, 64, 8, 8]     18,432
   BatchNorm2d-35       [-1, 64, 8, 8]       128
       ReLU-36       [-1, 64, 8, 8]        0
      Conv2d-37       [-1, 64, 8, 8]     36,864
   BatchNorm2d-38       [-1, 64, 8, 8]       128
      Conv2d-39       [-1, 64, 8, 8]     18,432
   BatchNorm2d-40       [-1, 64, 8, 8]       128
       ReLU-41       [-1, 64, 8, 8]        0
  ResidualBlock-42       [-1, 64, 8, 8]        0
      Conv2d-43       [-1, 64, 8, 8]     36,864
   BatchNorm2d-44       [-1, 64, 8, 8]       128
       ReLU-45       [-1, 64, 8, 8]        0
      Conv2d-46       [-1, 64, 8, 8]     36,864
   BatchNorm2d-47       [-1, 64, 8, 8]       128
       ReLU-48       [-1, 64, 8, 8]        0
  ResidualBlock-49       [-1, 64, 8, 8]        0
    AvgPool2d-50       [-1, 64, 1, 1]        0
      Linear-51          [-1, 10]       650
================================================================
Total params: 195,738
Trainable params: 195,738
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 3.63
Params size (MB): 0.75
Estimated Total Size (MB): 4.38
----------------------------------------------------------------

keras model summary

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
__________________________________________________________________________________________________
Layer (type)          Output Shape     Param #   Connected to          
==================================================================================================
input_26 (InputLayer)      (None, 32, 32, 30                     
__________________________________________________________________________________________________
conv2d_103 (Conv2D)       (None, 32, 32, 16448     input_26[0][0]         
__________________________________________________________________________________________________
batch_normalization_99 (BatchNo (None, 32, 32, 1664     conv2d_103[0][0]        
__________________________________________________________________________________________________
activation_87 (Activation)   (None, 32, 32, 160      batch_normalization_99[0][0]  
__________________________________________________________________________________________________
conv2d_104 (Conv2D)       (None, 32, 32, 162320    activation_87[0][0]      
__________________________________________________________________________________________________
batch_normalization_100 (BatchN (None, 32, 32, 1664     conv2d_104[0][0]        
__________________________________________________________________________________________________
activation_88 (Activation)   (None, 32, 32, 160      batch_normalization_100[0][0
__________________________________________________________________________________________________
conv2d_105 (Conv2D)       (None, 32, 32, 162320    activation_88[0][0]      
__________________________________________________________________________________________________
batch_normalization_101 (BatchN (None, 32, 32, 1664     conv2d_105[0][0]        
__________________________________________________________________________________________________
add_34 (Add)          (None, 32, 32, 160      activation_87[0][0]      
                                 batch_normalization_101[0][0
__________________________________________________________________________________________________
activation_89 (Activation)   (None, 32, 32, 160      add_34[0][0]          
__________________________________________________________________________________________________
conv2d_106 (Conv2D)       (None, 32, 32, 162320    activation_89[0][0]      
__________________________________________________________________________________________________
batch_normalization_102 (BatchN (None, 32, 32, 1664     conv2d_106[0][0]        
__________________________________________________________________________________________________
activation_90 (Activation)   (None, 32, 32, 160      batch_normalization_102[0][0
__________________________________________________________________________________________________
conv2d_107 (Conv2D)       (None, 32, 32, 162320    activation_90[0][0]      
__________________________________________________________________________________________________
batch_normalization_103 (BatchN (None, 32, 32, 1664     conv2d_107[0][0]        
__________________________________________________________________________________________________
add_35 (Add)          (None, 32, 32, 160      activation_89[0][0]      
                                 batch_normalization_103[0][0
__________________________________________________________________________________________________
activation_91 (Activation)   (None, 32, 32, 160      add_35[0][0]          
__________________________________________________________________________________________________
conv2d_108 (Conv2D)       (None, 16, 16, 324640    activation_91[0][0]      
__________________________________________________________________________________________________
batch_normalization_104 (BatchN (None, 16, 16, 32128     conv2d_108[0][0]        
__________________________________________________________________________________________________
activation_92 (Activation)   (None, 16, 16, 320      batch_normalization_104[0][0
__________________________________________________________________________________________________
conv2d_110 (Conv2D)       (None, 16, 16, 324640    activation_91[0][0]      
__________________________________________________________________________________________________
conv2d_109 (Conv2D)       (None, 16, 16, 329248    activation_92[0][0]      
__________________________________________________________________________________________________
batch_normalization_106 (BatchN (None, 16, 16, 32128     conv2d_110[0][0]        
__________________________________________________________________________________________________
batch_normalization_105 (BatchN (None, 16, 16, 32128     conv2d_109[0][0]        
__________________________________________________________________________________________________
add_36 (Add)          (None, 16, 16, 320      batch_normalization_106[0][0
                                 batch_normalization_105[0][0
__________________________________________________________________________________________________
activation_93 (Activation)   (None, 16, 16, 320      add_36[0][0]          
__________________________________________________________________________________________________
conv2d_111 (Conv2D)       (None, 16, 16, 329248    activation_93[0][0]      
__________________________________________________________________________________________________
batch_normalization_107 (BatchN (None, 16, 16, 32128     conv2d_111[0][0]        
__________________________________________________________________________________________________
activation_94 (Activation)   (None, 16, 16, 320      batch_normalization_107[0][0
__________________________________________________________________________________________________
conv2d_112 (Conv2D)       (None, 16, 16, 329248    activation_94[0][0]      
__________________________________________________________________________________________________
batch_normalization_108 (BatchN (None, 16, 16, 32128     conv2d_112[0][0]        
__________________________________________________________________________________________________
add_37 (Add)          (None, 16, 16, 320      activation_93[0][0]      
                                 batch_normalization_108[0][0
__________________________________________________________________________________________________
activation_95 (Activation)   (None, 16, 16, 320      add_37[0][0]          
__________________________________________________________________________________________________
conv2d_113 (Conv2D)       (None, 8, 8, 64)   18496    activation_95[0][0]      
__________________________________________________________________________________________________
batch_normalization_109 (BatchN (None, 8, 8, 64)   256     conv2d_113[0][0]        
__________________________________________________________________________________________________
activation_96 (Activation)   (None, 8, 8, 64)   0      batch_normalization_109[0][0
__________________________________________________________________________________________________
conv2d_115 (Conv2D)       (None, 8, 8, 64)   18496    activation_95[0][0]      
__________________________________________________________________________________________________
conv2d_114 (Conv2D)       (None, 8, 8, 64)   36928    activation_96[0][0]      
__________________________________________________________________________________________________
batch_normalization_111 (BatchN (None, 8, 8, 64)   256     conv2d_115[0][0]        
__________________________________________________________________________________________________
batch_normalization_110 (BatchN (None, 8, 8, 64)   256     conv2d_114[0][0]        
__________________________________________________________________________________________________
add_38 (Add)          (None, 8, 8, 64)   0      batch_normalization_111[0][0
                                 batch_normalization_110[0][0
__________________________________________________________________________________________________
activation_97 (Activation)   (None, 8, 8, 64)   0      add_38[0][0]          
__________________________________________________________________________________________________
conv2d_116 (Conv2D)       (None, 8, 8, 64)   36928    activation_97[0][0]      
__________________________________________________________________________________________________
batch_normalization_112 (BatchN (None, 8, 8, 64)   256     conv2d_116[0][0]        
__________________________________________________________________________________________________
activation_98 (Activation)   (None, 8, 8, 64)   0      batch_normalization_112[0][0
__________________________________________________________________________________________________
conv2d_117 (Conv2D)       (None, 8, 8, 64)   36928    activation_98[0][0]      
__________________________________________________________________________________________________
batch_normalization_113 (BatchN (None, 8, 8, 64)   256     conv2d_117[0][0]        
__________________________________________________________________________________________________
add_39 (Add)          (None, 8, 8, 64)   0      activation_97[0][0]      
                                 batch_normalization_113[0][0
__________________________________________________________________________________________________
activation_99 (Activation)   (None, 8, 8, 64)   0      add_39[0][0]          
__________________________________________________________________________________________________
average_pooling2d_2 (AveragePoo (None, 1, 1, 64)   0      activation_99[0][0]      
__________________________________________________________________________________________________
flatten_2 (Flatten)       (None, 64)      0      average_pooling2d_2[0][0]   
__________________________________________________________________________________________________
dense_2 (Dense)         (None, 10)      650     flatten_2[0][0]        
==================================================================================================
Total params: 197,418
Trainable params: 196,298
Non-trainable params: 1,120
__________________________________________________________________________________________________

以上這篇keras的三種模型實現與區別說明就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持服務器之家。

原文鏈接:https://blog.csdn.net/yeziyezi1986/article/details/106780379

延伸 · 閱讀

精彩推薦
主站蜘蛛池模板: 日本aaaa级| 青青青国产在线 | 久久精品小视频 | 国产一二区视频 | 久久亚洲网站 | 99久久精品免费看国产 | 精品一区二区三区中文 | 91精品国产91热久久久久福利 | 免费高清资源黄网站在线观看 | 婷婷天天 | 999精品视频在线 | 亚洲国产福利精品一区二区 | 男人晚上看的 | gay勾搭直男com| 免费一级国产大片 | 波多野结衣黑人系列在线观看 | 成年人黄色录像 | 国产精品久久现线拍久青草 | 2021国产麻豆剧传媒剧情最新 | 五月天久久久 | 日韩毛片免费 | 欧美a在线观看 | 99精品视频只99有精品 | 青青草原伊人网 | 欧美三级做爰全过程 | 欧美一区二区日韩一区二区 | 91夜夜人人揉人人捏人人添 | 四虎影视免费 | 无遮无挡免费视频 | 日韩无砖2021特黄 | 国产视频一区二 | 国产精品久久久99 | 女人全身裸露无遮挡免费观看 | 国产精品福利在线观看免费不卡 | 天天综合天天影视色香欲俱全 | 亚洲精品6久久久久中文字幕 | 高中生放荡日记高h娜娜 | 久久中文电影 | 国产小视频在线免费观看 | 视频在线欧美 | 国产3p绿奴在线视频 |