一区二区三区在线-一区二区三区亚洲视频-一区二区三区亚洲-一区二区三区午夜-一区二区三区四区在线视频-一区二区三区四区在线免费观看

腳本之家,腳本語言編程技術及教程分享平臺!
分類導航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服務器之家 - 腳本之家 - Python - pytorch使用horovod多gpu訓練的實現

pytorch使用horovod多gpu訓練的實現

2020-09-10 00:13You-wh Python

這篇文章主要介紹了pytorch使用horovod多gpu訓練的實現,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧

pytorch在Horovod上訓練步驟分為以下幾步:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import torch
import horovod.torch as hvd
 
# Initialize Horovod 初始化horovod
hvd.init()
 
# Pin GPU to be used to process local rank (one GPU per process) 分配到每個gpu上
torch.cuda.set_device(hvd.local_rank())
 
# Define dataset... 定義dataset
train_dataset = ...
 
# Partition dataset among workers using DistributedSampler 對dataset的采樣器進行調整,使用torch.utils.data.distributed.DistributedSampler
train_sampler = torch.utils.data.distributed.DistributedSampler(
  train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
 
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=..., sampler=train_sampler)
 
# Build model...
model = ...
model.cuda()
 
optimizer = optim.SGD(model.parameters())
 
# Add Horovod Distributed Optimizer 使用Horovod的分布式優化器函數包裹在原先optimizer上
optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters())
 
# Broadcast parameters from rank 0 to all other processes. 參數廣播到每個gpu上
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
 
for epoch in range(100):
  for batch_idx, (data, target) in enumerate(train_loader):
    optimizer.zero_grad()
    output = model(data)
    loss = F.nll_loss(output, target)
    loss.backward()
    optimizer.step()
    if batch_idx % args.log_interval == 0:
      print('Train Epoch: {} [{}/{}]\tLoss: {}'.format(
        epoch, batch_idx * len(data), len(train_sampler), loss.item()))

完整示例代碼如下,在imagenet上采用resnet50進行訓練

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
from __future__ import print_function
 
 import torch
 import argparse
 import torch.backends.cudnn as cudnn
 import torch.nn.functional as F
 import torch.optim as optim
 import torch.utils.data.distributed
 from torchvision import datasets, transforms, models
import horovod.torch as hvd
import os
import math
from tqdm import tqdm
from distutils.version import LooseVersion
 
# Training settings
parser = argparse.ArgumentParser(description='PyTorch ImageNet Example',
                 formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--train-dir', default=os.path.expanduser('~/imagenet/train'),
          help='path to training data')
parser.add_argument('--val-dir', default=os.path.expanduser('~/imagenet/validation'),
          help='path to validation data')
parser.add_argument('--log-dir', default='./logs',
          help='tensorboard log directory')
parser.add_argument('--checkpoint-format', default='./checkpoint-{epoch}.pth.tar',
          help='checkpoint file format')
parser.add_argument('--fp-allreduce', action='store_true', default=False,
          help='use fp compression during allreduce')
parser.add_argument('--batches-per-allreduce', type=int, default=,
          help='number of batches processed locally before '
             'executing allreduce across workers; it multiplies '
             'total batch size.')
parser.add_argument('--use-adasum', action='store_true', default=False,
          help='use adasum algorithm to do reduction')
 
# Default settings from https://arxiv.org/abs/1706.02677.
parser.add_argument('--batch-size', type=int, default=32,
          help='input batch size for training')
parser.add_argument('--val-batch-size', type=int, default=32,
          help='input batch size for validation')
parser.add_argument('--epochs', type=int, default=90,
          help='number of epochs to train')
parser.add_argument('--base-lr', type=float, default=0.0125,
44           help='learning rate for a single GPU')
45 parser.add_argument('--warmup-epochs', type=float, default=5,
          help='number of warmup epochs')
parser.add_argument('--momentum', type=float, default=0.9,
          help='SGD momentum')
parser.add_argument('--wd', type=float, default=0.00005,
          help='weight decay')
 
parser.add_argument('--no-cuda', action='store_true', default=False,
          help='disables CUDA training')
parser.add_argument('--seed', type=int, default=42,
          help='random seed')
 
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
 
allreduce_batch_size = args.batch_size * args.batches_per_allreduce
 
hvd.init()
torch.manual_seed(args.seed)
 
if args.cuda:
  # Horovod: pin GPU to local rank.
  torch.cuda.set_device(hvd.local_rank())
  torch.cuda.manual_seed(args.seed)
 
cudnn.benchmark = True
 
# If set > 0, will resume training from a given checkpoint.
resume_from_epoch = 0
for try_epoch in range(args.epochs, 0, -1):
  if os.path.exists(args.checkpoint_format.format(epoch=try_epoch)):
    resume_from_epoch = try_epoch
    break
 
# Horovod: broadcast resume_from_epoch from rank 0 (which will have
# checkpoints) to other ranks.
resume_from_epoch = hvd.broadcast(torch.tensor(resume_from_epoch), root_rank=0,
                 name='resume_from_epoch').item()
 
# Horovod: print logs on the first worker.
verbose = 1 if hvd.rank() == 0 else 0
 
# Horovod: write TensorBoard logs on first worker.
try:
  if LooseVersion(torch.__version__) >= LooseVersion('1.2.0'):
    from torch.utils.tensorboard import SummaryWriter
  else:
    from tensorboardX import SummaryWriter
  log_writer = SummaryWriter(args.log_dir) if hvd.rank() == 0 else None
except ImportError:
  log_writer = None
 
# Horovod: limit # of CPU threads to be used per worker.
torch.set_num_threads(4)
 
kwargs = {'num_workers': 4, 'pin_memory': True} if args.cuda else {}
train_dataset = \
  datasets.ImageFolder(args.train_dir,
            transform=transforms.Compose([
              transforms.RandomResizedCrop(224),
              transforms.RandomHorizontalFlip(),
              transforms.ToTensor(),
              transforms.Normalize(mean=[., ., .],
                         std=[0.229, 0.224, 0.225])
            ]))
# Horovod: use DistributedSampler to partition data among workers. Manually specify
# `num_replicas=hvd.size()` and `rank=hvd.rank()`.
train_sampler = torch.utils.data.distributed.DistributedSampler(
  train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
train_loader = torch.utils.data.DataLoader(
  train_dataset, batch_size=allreduce_batch_size,
  sampler=train_sampler, **kwargs)
 
val_dataset = \
  datasets.ImageFolder(args.val_dir,
            transform=transforms.Compose([
              transforms.Resize(256),
              transforms.CenterCrop(224),
              transforms.ToTensor(),
              transforms.Normalize(mean=[0.485, 0.456, 0.406],
                         std=[0.229, 0.224, 0.225])
            ]))
val_sampler = torch.utils.data.distributed.DistributedSampler(
  val_dataset, num_replicas=hvd.size(), rank=hvd.rank())
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=args.val_batch_size,
                    sampler=val_sampler, **kwargs)
 
 
# Set up standard ResNet-50 model.
model = models.resnet50()
 
# By default, Adasum doesn't need scaling up learning rate.
# For sum/average with gradient Accumulation: scale learning rate by batches_per_allreduce
lr_scaler = args.batches_per_allreduce * hvd.size() if not args.use_adasum else 1
 
if args.cuda:
  # Move model to GPU.
  model.cuda()
  # If using GPU Adasum allreduce, scale learning rate by local_size.
  if args.use_adasum and hvd.nccl_built():
    lr_scaler = args.batches_per_allreduce * hvd.local_size()
 
# Horovod: scale learning rate by the number of GPUs.
optimizer = optim.SGD(model.parameters(),
           lr=(args.base_lr *
             lr_scaler),
           momentum=args.momentum, weight_decay=args.wd)
 
# Horovod: (optional) compression algorithm.
compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none
 
# Horovod: wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(
  optimizer, named_parameters=model.named_parameters(),
  compression=compression,
  backward_passes_per_step=args.batches_per_allreduce,
  op=hvd.Adasum if args.use_adasum else hvd.Average)
 
# Restore from a previous checkpoint, if initial_epoch is specified.
# Horovod: restore on the first worker which will broadcast weights to other workers.
if resume_from_epoch > 0 and hvd.rank() == 0:
  filepath = args.checkpoint_format.format(epoch=resume_from_epoch)
  checkpoint = torch.load(filepath)
  model.load_state_dict(checkpoint['model'])
  optimizer.load_state_dict(checkpoint['optimizer'])
 
# Horovod: broadcast parameters & optimizer state.
hvd.broadcast_parameters(model.state_dict(), root_rank=)
hvd.broadcast_optimizer_state(optimizer, root_rank=)
 
def train(epoch):
  model.train()
  train_sampler.set_epoch(epoch)
  train_loss = Metric('train_loss')
  train_accuracy = Metric('train_accuracy')
 
  with tqdm(total=len(train_loader),
       desc='Train Epoch   #{}'.format(epoch + 1),
       disable=not verbose) as t:
    for batch_idx, (data, target) in enumerate(train_loader):
      adjust_learning_rate(epoch, batch_idx)
 
      if args.cuda:
        data, target = data.cuda(), target.cuda()
      optimizer.zero_grad()
      # Split data into sub-batches of size batch_size
      for i in range(0, len(data), args.batch_size):
        data_batch = data[i:i + args.batch_size]
        target_batch = target[i:i + args.batch_size]
        output = model(data_batch)
        train_accuracy.update(accuracy(output, target_batch))
        loss = F.cross_entropy(output, target_batch)
        train_loss.update(loss)
        # Average gradients among sub-batches
        loss.div_(math.ceil(float(len(data)) / args.batch_size))
        loss.backward()
      # Gradient is applied across all ranks
      optimizer.step()
      t.set_postfix({'loss': train_loss.avg.item(),
             'accuracy': 100. * train_accuracy.avg.item()})
      t.update(1)
 
  if log_writer:
    log_writer.add_scalar('train/loss', train_loss.avg, epoch)
    log_writer.add_scalar('train/accuracy', train_accuracy.avg, epoch)
 
 
def validate(epoch):
  model.eval()
  val_loss = Metric('val_loss')
  val_accuracy = Metric('val_accuracy')
 
  with tqdm(total=len(val_loader),
       desc='Validate Epoch #{}'.format(epoch + ),
       disable=not verbose) as t:
    with torch.no_grad():
      for data, target in val_loader:
        if args.cuda:
          data, target = data.cuda(), target.cuda()
        output = model(data)
 
        val_loss.update(F.cross_entropy(output, target))
        val_accuracy.update(accuracy(output, target))
        t.set_postfix({'loss': val_loss.avg.item(),
               'accuracy': 100. * val_accuracy.avg.item()})
       t.update(1)
 
  if log_writer:
    log_writer.add_scalar('val/loss', val_loss.avg, epoch)
    log_writer.add_scalar('val/accuracy', val_accuracy.avg, epoch)
 
 
# Horovod: using `lr = base_lr * hvd.size()` from the very beginning leads to worse final
# accuracy. Scale the learning rate `lr = base_lr` ---> `lr = base_lr * hvd.size()` during
# the first five epochs. See https://arxiv.org/abs/1706.02677 for details.
# After the warmup reduce learning rate by 10 on the 30th, 60th and 80th epochs.
def adjust_learning_rate(epoch, batch_idx):
  if epoch < args.warmup_epochs:
    epoch += float(batch_idx + 1) / len(train_loader)
    lr_adj = 1. / hvd.size() * (epoch * (hvd.size() - 1) / args.warmup_epochs + 1)
  elif epoch < 30:
    lr_adj = 1.
  elif epoch < 60:
    lr_adj = 1e-1
  elif epoch < 80:
    lr_adj = 1e-2
  else:
    lr_adj = 1e-3
  for param_group in optimizer.param_groups:
    param_group['lr'] = args.base_lr * hvd.size() * args.batches_per_allreduce * lr_adj
 
 
def accuracy(output, target):
  # get the index of the max log-probability
  pred = output.max(1, keepdim=True)[1]
  return pred.eq(target.view_as(pred)).cpu().float().mean()
 
 
def save_checkpoint(epoch):
  if hvd.rank() == 0:
    filepath = args.checkpoint_format.format(epoch=epoch + 1)
    state = {
      'model': model.state_dict(),
      'optimizer': optimizer.state_dict(),
    }
    torch.save(state, filepath)
 
 
# Horovod: average metrics from distributed training.
class Metric(object):
  def __init__(self, name):
    self.name = name
    self.sum = torch.tensor(0.)
    self.n = torch.tensor(0.)
 
  def update(self, val):
    self.sum += hvd.allreduce(val.detach().cpu(), name=self.name)
    self.n += 1
 
  @property
  def avg(self):
    return self.sum / self.n
 
 
for epoch in range(resume_from_epoch, args.epochs):
  train(epoch)
  validate(epoch)
  save_checkpoint(epoch)

到此這篇關于pytorch使用horovod多gpu訓練的實現的文章就介紹到這了,更多相關pytorch horovod多gpu訓練內容請搜索服務器之家以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持服務器之家! 

原文鏈接:https://www.cnblogs.com/ywheunji/p/12298518.html

延伸 · 閱讀

精彩推薦
主站蜘蛛池模板: 乌克兰黄色录像 | 久久国产伦子伦精品 | 亚洲四虎永久在线播放 | 欧美一区二区三区gg高清影视 | 红色一片在线影视 | 超91在线 | 三级aaa黄特色 | 国产午夜成人无码免费看 | yy111111影院理论大片 | 1986葫芦兄弟全集免费观看第十集 | 亚洲福利一区二区精品秒拍 | 日韩免费视频播放 | 亚洲AV无码专区国产乱码网站 | 日本xxx片免费高清在线 | 亚洲精品国偷拍自产在线观看蜜臀 | 亚洲国产精品第一区二区三区 | 国产在视频| 黄a 大片a v 永久免费 | 亚洲国产第一区二区香蕉日日 | 日本特黄一级大片 | 国产高清小视频 | 手机看片福利盒子久久 | vod国产成人精品视频 | 17个农民工婉莹第一部 | 欧美日韩一级视频 | 天堂在线中文字幕 | 欧美日韩亚洲综合在线一区二区 | 亚洲欧美精品一区天堂久久 | 亚洲精品久久久成人 | 亚洲视频在线观看免费视频 | 精品在线91 | 久久精品久久久久 | 99热这里只有精品在线 | 国产精品日本一区二区三区在线看 | 91亚洲视频在线观看 | 34g污奶跳舞 | 女人和拘做受全过程免费 | 国产91网站在线观看 | 亚洲品质自拍视频 | 热99这里有精品综合久久 | 成年人视频在线免费观看 |