一区二区三区在线-一区二区三区亚洲视频-一区二区三区亚洲-一区二区三区午夜-一区二区三区四区在线视频-一区二区三区四区在线免费观看

腳本之家,腳本語言編程技術及教程分享平臺!
分類導航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服務器之家 - 腳本之家 - Python - PyTorch CNN實戰之MNIST手寫數字識別示例

PyTorch CNN實戰之MNIST手寫數字識別示例

2021-02-26 00:29yuquanle Python

本篇文章主要介紹了PyTorch CNN實戰之MNIST手寫數字識別示例,小編覺得挺不錯的,現在分享給大家,也給大家做個參考。一起跟隨小編過來看看吧

簡介

卷積神經網絡(Convolutional Neural Network, CNN)是深度學習技術中極具代表的網絡結構之一,在圖像處理領域取得了很大的成功,在國際標準的ImageNet數據集上,許多成功的模型都是基于CNN的。

卷積神經網絡CNN的結構一般包含這幾個層:

  1. 輸入層:用于數據的輸入
  2. 卷積層:使用卷積核進行特征提取和特征映射
  3. 激勵層:由于卷積也是一種線性運算,因此需要增加非線性映射
  4. 池化層:進行下采樣,對特征圖稀疏處理,減少數據運算量。
  5. 全連接層:通常在CNN的尾部進行重新擬合,減少特征信息的損失
  6. 輸出層:用于輸出結果

PyTorch CNN實戰之MNIST手寫數字識別示例

PyTorch實戰

本文選用上篇的數據集MNIST手寫數字識別實踐CNN。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
 
# Training settings
batch_size = 64
 
# MNIST Dataset
train_dataset = datasets.MNIST(root='./data/',
                train=True,
                transform=transforms.ToTensor(),
                download=True)
 
test_dataset = datasets.MNIST(root='./data/',
               train=False,
               transform=transforms.ToTensor())
 
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                      batch_size=batch_size,
                      shuffle=True)
 
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                     batch_size=batch_size,
                     shuffle=False)
 
 
class Net(nn.Module):
  def __init__(self):
    super(Net, self).__init__()
    # 輸入1通道,輸出10通道,kernel 5*5
    self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
    self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
    self.mp = nn.MaxPool2d(2)
    # fully connect
    self.fc = nn.Linear(320, 10)
 
  def forward(self, x):
    # in_size = 64
    in_size = x.size(0) # one batch
    # x: 64*10*12*12
    x = F.relu(self.mp(self.conv1(x)))
    # x: 64*20*4*4
    x = F.relu(self.mp(self.conv2(x)))
    # x: 64*320
    x = x.view(in_size, -1) # flatten the tensor
    # x: 64*10
    x = self.fc(x)
    return F.log_softmax(x)
 
 
model = Net()
 
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
 
def train(epoch):
  for batch_idx, (data, target) in enumerate(train_loader):
    data, target = Variable(data), Variable(target)
    optimizer.zero_grad()
    output = model(data)
    loss = F.nll_loss(output, target)
    loss.backward()
    optimizer.step()
    if batch_idx % 200 == 0:
      print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
        epoch, batch_idx * len(data), len(train_loader.dataset),
        100. * batch_idx / len(train_loader), loss.data[0]))
 
 
def test():
  test_loss = 0
  correct = 0
  for data, target in test_loader:
    data, target = Variable(data, volatile=True), Variable(target)
    output = model(data)
    # sum up batch loss
    test_loss += F.nll_loss(output, target, size_average=False).data[0]
    # get the index of the max log-probability
    pred = output.data.max(1, keepdim=True)[1]
    correct += pred.eq(target.data.view_as(pred)).cpu().sum()
 
  test_loss /= len(test_loader.dataset)
  print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
    test_loss, correct, len(test_loader.dataset),
    100. * correct / len(test_loader.dataset)))
 
 
for epoch in range(1, 10):
  train(epoch)
  test()

輸出結果:

Train Epoch: 1 [0/60000 (0%)]   Loss: 2.315724
Train Epoch: 1 [12800/60000 (21%)]  Loss: 1.931551
Train Epoch: 1 [25600/60000 (43%)]  Loss: 0.733935
Train Epoch: 1 [38400/60000 (64%)]  Loss: 0.165043
Train Epoch: 1 [51200/60000 (85%)]  Loss: 0.235188

Test set: Average loss: 0.1935, Accuracy: 9421/10000 (94%)

Train Epoch: 2 [0/60000 (0%)]   Loss: 0.333513
Train Epoch: 2 [12800/60000 (21%)]  Loss: 0.163156
Train Epoch: 2 [25600/60000 (43%)]  Loss: 0.213840
Train Epoch: 2 [38400/60000 (64%)]  Loss: 0.141114
Train Epoch: 2 [51200/60000 (85%)]  Loss: 0.128191

Test set: Average loss: 0.1180, Accuracy: 9645/10000 (96%)

Train Epoch: 3 [0/60000 (0%)]   Loss: 0.206469
Train Epoch: 3 [12800/60000 (21%)]  Loss: 0.234443
Train Epoch: 3 [25600/60000 (43%)]  Loss: 0.061048
Train Epoch: 3 [38400/60000 (64%)]  Loss: 0.192217
Train Epoch: 3 [51200/60000 (85%)]  Loss: 0.089190

Test set: Average loss: 0.0938, Accuracy: 9723/10000 (97%)

Train Epoch: 4 [0/60000 (0%)]   Loss: 0.086325
Train Epoch: 4 [12800/60000 (21%)]  Loss: 0.117741
Train Epoch: 4 [25600/60000 (43%)]  Loss: 0.188178
Train Epoch: 4 [38400/60000 (64%)]  Loss: 0.049807
Train Epoch: 4 [51200/60000 (85%)]  Loss: 0.174097

Test set: Average loss: 0.0743, Accuracy: 9767/10000 (98%)

Train Epoch: 5 [0/60000 (0%)]   Loss: 0.063171
Train Epoch: 5 [12800/60000 (21%)]  Loss: 0.061265
Train Epoch: 5 [25600/60000 (43%)]  Loss: 0.103549
Train Epoch: 5 [38400/60000 (64%)]  Loss: 0.019137
Train Epoch: 5 [51200/60000 (85%)]  Loss: 0.067103

Test set: Average loss: 0.0720, Accuracy: 9781/10000 (98%)

Train Epoch: 6 [0/60000 (0%)]   Loss: 0.069251
Train Epoch: 6 [12800/60000 (21%)]  Loss: 0.075502
Train Epoch: 6 [25600/60000 (43%)]  Loss: 0.052337
Train Epoch: 6 [38400/60000 (64%)]  Loss: 0.015375
Train Epoch: 6 [51200/60000 (85%)]  Loss: 0.028996

Test set: Average loss: 0.0694, Accuracy: 9783/10000 (98%)

Train Epoch: 7 [0/60000 (0%)]   Loss: 0.171613
Train Epoch: 7 [12800/60000 (21%)]  Loss: 0.078520
Train Epoch: 7 [25600/60000 (43%)]  Loss: 0.149186
Train Epoch: 7 [38400/60000 (64%)]  Loss: 0.026692
Train Epoch: 7 [51200/60000 (85%)]  Loss: 0.108824

Test set: Average loss: 0.0672, Accuracy: 9793/10000 (98%)

Train Epoch: 8 [0/60000 (0%)]   Loss: 0.029188
Train Epoch: 8 [12800/60000 (21%)]  Loss: 0.031202
Train Epoch: 8 [25600/60000 (43%)]  Loss: 0.194858
Train Epoch: 8 [38400/60000 (64%)]  Loss: 0.051497
Train Epoch: 8 [51200/60000 (85%)]  Loss: 0.024832

Test set: Average loss: 0.0535, Accuracy: 9837/10000 (98%)

Train Epoch: 9 [0/60000 (0%)]   Loss: 0.026706
Train Epoch: 9 [12800/60000 (21%)]  Loss: 0.057807
Train Epoch: 9 [25600/60000 (43%)]  Loss: 0.065225
Train Epoch: 9 [38400/60000 (64%)]  Loss: 0.037004
Train Epoch: 9 [51200/60000 (85%)]  Loss: 0.057822

Test set: Average loss: 0.0538, Accuracy: 9829/10000 (98%)

Process finished with exit code 0

參考:https://github.com/hunkim/PyTorchZeroToAll

以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持服務器之家。

原文鏈接:https://blog.csdn.net/m0_37306360/article/details/79311501

延伸 · 閱讀

精彩推薦
主站蜘蛛池模板: 师尊被各种play打屁股 | 福利视频一区二区牛牛 | 隔壁的漂亮邻居hd中文 | 办公室强行丝袜秘书啪啪 | 欧美特黄视频在线观看 | 亚洲欧洲日产v特级毛片 | 男男18视频免费网站 | 男人天堂资源网 | 精品国产欧美一区二区五十路 | 欧美日韩国产精品自在自线 | 国产日本韩国不卡在线视频 | 天天躁天天碰天天看 | 国产精品原创永久在线观看 | 国产91素人搭讪系列天堂 | 久久久久久久尹人综合网亚洲 | 色啊色| 成人观看免费观看视频 | 国产精品原创巨作无遮挡 | 我要色色网| 亚洲视频在线一区二区三区 | 国产精品九九免费视频 | 996热精品视频在线观看 | 2021国产麻豆剧传媒新片 | 人与动人物人a级特片 | 四虎成人免费大片在线 | 欧美日韩国产在线人成 | 成人观看免费大片在线观看 | ts人妖另类国产 | 男人扒开女人下身添 | 日韩网新片免费 | 国内小情侣一二三区在线视频 | 3x免费高清视频 | 青青青久热国产精品视频 | 色婷亚洲| 99资源站 | 新新电影理论中文字幕 | 日韩视频在线精品视频免费观看 | 国产经典一区二区三区蜜芽 | 国产自产自拍 | 99久久综合| 午夜国产精品视频在线 |