本文介紹了Spring線程池ThreadPoolTaskExecutor配置,分享給大家,具體如下:
1. ThreadPoolTaskExecutor配置
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
<!-- spring thread pool executor --> < bean id = "taskExecutor" class = "org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor" > <!-- 線程池維護線程的最少數量 --> < property name = "corePoolSize" value = "5" /> <!-- 允許的空閑時間 --> < property name = "keepAliveSeconds" value = "200" /> <!-- 線程池維護線程的最大數量 --> < property name = "maxPoolSize" value = "10" /> <!-- 緩存隊列 --> < property name = "queueCapacity" value = "20" /> <!-- 對拒絕task的處理策略 --> < property name = "rejectedExecutionHandler" > < bean class = "java.util.concurrent.ThreadPoolExecutor$CallerRunsPolicy" /> </ property > </ bean > |
屬性字段說明
corePoolSize:線程池維護線程的最少數量
keepAliveSeconds:允許的空閑時間
maxPoolSize:線程池維護線程的最大數量
queueCapacity:緩存隊列
rejectedExecutionHandler:對拒絕task的處理策略
2. execute(Runable)方法執行過程
如果此時線程池中的數量小于corePoolSize,即使線程池中的線程都處于空閑狀態,也要創建新的線程來處理被添加的任務。
如果此時線程池中的數量等于 corePoolSize,但是緩沖隊列 workQueue未滿,那么任務被放入緩沖隊列。
如果此時線程池中的數量大于corePoolSize,緩沖隊列workQueue滿,并且線程池中的數量小于maxPoolSize,建新的線程來處理被添加的任務。
如果此時線程池中的數量大于corePoolSize,緩沖隊列workQueue滿,并且線程池中的數量等于maxPoolSize,那么通過handler所指定的策略來處理此任務。也就是:處理任務的優先級為:核心線程corePoolSize、任務隊列workQueue、最大線程 maximumPoolSize,如果三者都滿了,使用handler處理被拒絕的任務。
當線程池中的線程數量大于corePoolSize時,如果某線程空閑時間超過keepAliveTime,線程將被終止。這樣,線程池可以動態的調整池中的線程數。
3. 示例代碼
Junit Test
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
@RunWith (SpringJUnit4ClassRunner. class ) @ContextConfiguration (classes = { MultiThreadConfig. class }) public class MultiThreadTest { @Autowired private ThreadPoolTaskExecutor taskExecutor; @Autowired private MultiThreadProcessService multiThreadProcessService; @Test public void test() { int n = 20 ; for ( int i = 0 ; i < n; i++) { taskExecutor.execute( new MultiThreadDemo(multiThreadProcessService)); System.out.println( "int i is " + i + ", now threadpool active threads totalnum is " + taskExecutor.getActiveCount()); } try { System.in.read(); } catch (IOException e) { throw new RuntimeException(e); } } } |
MultiThreadDemo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
/** * 多線程并發處理demo * @author daniel.zhao * */ public class MultiThreadDemo implements Runnable { private MultiThreadProcessService multiThreadProcessService; public MultiThreadDemo() { } public MultiThreadDemo(MultiThreadProcessService multiThreadProcessService) { this .multiThreadProcessService = multiThreadProcessService; } @Override public void run() { multiThreadProcessService.processSomething(); } } |
MultiThreadProcessService
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
@Service public class MultiThreadProcessService { public static final Logger logger = Logger.getLogger(MultiThreadProcessService. class ); /** * 默認處理流程耗時1000ms */ public void processSomething() { logger.debug( "MultiThreadProcessService-processSomething" + Thread.currentThread() + "......start" ); try { Thread.sleep( 1000 ); } catch (InterruptedException e) { throw new RuntimeException(e); } logger.debug( "MultiThreadProcessService-processSomething" + Thread.currentThread() + "......end" ); } } |
MultiThreadConfig
1
2
3
4
5
6
|
@Configuration @ComponentScan (basePackages = { "com.xxx.multithread" }) @ImportResource (value = { "classpath:config/application-task.xml" }) @EnableScheduling public class MultiThreadConfig { } |
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持服務器之家。
原文鏈接:https://www.cnblogs.com/redcool/p/6426173.html