一.什么是負載均衡
負載均衡(Load-balance LB),指的是將用戶的請求平攤分配到各個服務器上,從而達到系統(tǒng)的高可用。常見的負載均衡軟件有Nginx、lvs等。
二.負載均衡的簡單分類
1)集中式LB:集中式負載均衡指的是,在服務消費者(client)和服務提供者(provider)之間提供負載均衡設施,通過該設施把消費者(client)的請求通過某種策略轉發(fā)給服務提供者(provider),常見的集中式負載均衡是Nginx;
2)進程式LB:將負載均衡的邏輯集成到消費者(client)身上,即消費者從服務注冊中心獲取服務列表,獲知有哪些地址可用,再從這些地址里選出合適的服務器,springCloud的Ribbon就是一個進程式的負載均衡工具。
三.為什么需要做負載均衡
1) 不做負載均衡,可能導致某臺機子負荷太重而掛掉;
2)導致資源浪費,比如某些機子收到太多的請求,肯定會導致某些機子收到很少請求甚至收不到請求,這樣會浪費系統(tǒng)資源。
四.springCloud如何開啟負載均衡
1)在消費者子工程的pom.xml文件的加入相關依賴(https://mvnrepository.com/artifact/org.springframework.cloud/spring-cloud-starter-ribbon/1.4.7.RELEASE);
- <!-- https://mvnrepository.com/artifact/org.springframework.cloud/spring-cloud-starter-ribbon -->
- <dependency>
- <groupId>org.springframework.cloud</groupId>
- <artifactId>spring-cloud-starter-ribbon</artifactId>
- <version>1.4.7.RELEASE</version>
- </dependency>
消費者需要獲取服務注冊中心的注冊列表信息,把Eureka的依賴包也放進pom.xml
- <dependency>
- <groupId>org.springframework.cloud</groupId>
- <artifactId>spring-cloud-starter-eureka-server</artifactId>
- <version>1.4.7.RELEASE</version>
- </dependency>
2)在application.yml里配置服務注冊中心的信息
在該消費者(client)的application.yml里配置Eureka的信息
- #配置Eureka
- eureka:
- client:
- #是否注冊自己到服務注冊中心,消費者不用提供服務
- register-with-eureka: false
- service-url:
- #訪問的url
- defaultZone: http://localhost:8002/eureka/
3)在消費者啟動類上面加上注解@EnableEurekaClient
- @EnableEurekaClient
4)在配置文件的Bean上加上
- @Bean
- @LoadBalanced
- public RestTemplate getRestTemplate(){
- return new RestTemplate();
- }
五.IRule
什么是IRule
IRule接口代表負載均衡的策略,它的不同的實現(xiàn)類代表不同的策略,它的四種實現(xiàn)類和它的關系如下()
說明一下(idea找Irule的方法:ctrl+n 填入IRule進行查找)
1.RandomRule:表示隨機策略,它將從服務清單中隨機選擇一個服務;
- public class RandomRule extends AbstractLoadBalancerRule {
- public RandomRule() {
- }
- @SuppressWarnings({"RCN_REDUNDANT_NULLCHECK_OF_NULL_VALUE"})
- //傳入一個負載均衡器
- public Server choose(ILoadBalancer lb, Object key) {
- if (lb == null) {
- return null;
- } else {
- Server server = null;
- while(server == null) {
- if (Thread.interrupted()) {
- return null;
- }
- //通過負載均衡器獲取對應的服務列表
- List<Server> upList = lb.getReachableServers();
- //通過負載均衡器獲取全部服務列表
- List<Server> allList = lb.getAllServers();
- int serverCount = allList.size();
- if (serverCount == 0) {
- return null;
- }
- //獲取一個隨機數(shù)
- int index = this.chooseRandomInt(serverCount);
- //通過這個隨機數(shù)從列表里獲取服務
- server = (Server)upList.get(index);
- if (server == null) {
- //當前線程轉為就緒狀態(tài),讓出cpu
- Thread.yield();
- } else {
- if (server.isAlive()) {
- return server;
- }
- server = null;
- Thread.yield();
- }
- }
- return server;
- }
- }
小結:通過獲取到的所有服務的數(shù)量,以這個數(shù)量為標準獲取一個(0,服務數(shù)量)的數(shù)作為獲取服務實例的下標,從而獲取到服務實例
2.ClientConfigEnabledRoundRobinRule:ClientConfigEnabledRoundRobinRule并沒有實現(xiàn)什么特殊的處理邏輯,但是他的子類可以實現(xiàn)一些高級策略, 當一些本身的策略無法實現(xiàn)某些需求的時候,它也可以做為父類幫助實現(xiàn)某些策略,一般情況下我們都不會使用它;
- public class ClientConfigEnabledRoundRobinRule extends AbstractLoadBalancerRule {
- //使用“4”中的RoundRobinRule策略
- RoundRobinRule roundRobinRule = new RoundRobinRule();
- public ClientConfigEnabledRoundRobinRule() {
- }
- public void initWithNiwsConfig(IClientConfig clientConfig) {
- this.roundRobinRule = new RoundRobinRule();
- }
- public void setLoadBalancer(ILoadBalancer lb) {
- super.setLoadBalancer(lb);
- this.roundRobinRule.setLoadBalancer(lb);
- }
- public Server choose(Object key) {
- if (this.roundRobinRule != null) {
- return this.roundRobinRule.choose(key);
- } else {
- throw new IllegalArgumentException("This class has not been initialized with the RoundRobinRule class");
- }
- }
- }
小結:用來作為父類,子類通過實現(xiàn)它來實現(xiàn)一些高級負載均衡策略
1)ClientConfigEnabledRoundRobinRule的子類BestAvailableRule:從該策略的名字就可以知道,bestAvailable的意思是最好獲取的,該策略的作用是獲取到最空閑的服務實例;
- public class BestAvailableRule extends ClientConfigEnabledRoundRobinRule {
- //注入負載均衡器,它可以選擇服務實例
- private LoadBalancerStats loadBalancerStats;
- public BestAvailableRule() {
- }
- public Server choose(Object key) {
- //假如負載均衡器實例為空,采用它父類的負載均衡機制,也就是輪詢機制,因為它的父類采用的就是輪詢機制
- if (this.loadBalancerStats == null) {
- return super.choose(key);
- } else {
- //獲取所有服務實例并放入列表里
- List<Server> serverList = this.getLoadBalancer().getAllServers();
- //并發(fā)量
- int minimalConcurrentConnections = 2147483647;
- long currentTime = System.currentTimeMillis();
- Server chosen = null;
- Iterator var7 = serverList.iterator();
- //遍歷服務列表
- while(var7.hasNext()) {
- Server server = (Server)var7.next();
- ServerStats serverStats = this.loadBalancerStats.getSingleServerStat(server);
- //淘汰掉已經負載的服務實例
- if (!serverStats.isCircuitBreakerTripped(currentTime)) {
- //獲得當前服務的請求量(并發(fā)量)
- int concurrentConnections = serverStats.getActiveRequestsCount(currentTime);
- //找出并發(fā)了最小的服務
- if (concurrentConnections < minimalConcurrentConnections) {
- minimalConcurrentConnections = concurrentConnections;
- chosen = server;
- }
- }
- }
- if (chosen == null) {
- return super.choose(key);
- } else {
- return chosen;
- }
- }
- }
- public void setLoadBalancer(ILoadBalancer lb) {
- super.setLoadBalancer(lb);
- if (lb instanceof AbstractLoadBalancer) {
- this.loadBalancerStats = ((AbstractLoadBalancer)lb).getLoadBalancerStats();
- }
- }
- }
小結:ClientConfigEnabledRoundRobinRule子類之一,獲取到并發(fā)了最少的服務
2)ClientConfigEnabledRoundRobinRule的另一個子類是PredicateBasedRule:通過源碼可以看出它是一個抽象類,它的抽象方法getPredicate()返回一個AbstractServerPredicate的實例,然后它的choose方法調用AbstractServerPredicate類的chooseRoundRobinAfterFiltering方法獲取具體的Server實例并返回
- public abstract class PredicateBasedRule extends ClientConfigEnabledRoundRobinRule {
- public PredicateBasedRule() {
- }
- //獲取AbstractServerPredicate對象
- public abstract AbstractServerPredicate getPredicate();
- public Server choose(Object key) {
- //獲取當前策略的負載均衡器
- ILoadBalancer lb = this.getLoadBalancer();
- //通過AbstractServerPredicate的子類過濾掉一部分實例(它實現(xiàn)了Predicate)
- //以輪詢的方式從過濾后的服務里選擇一個服務
- Optional<Server> server = this.getPredicate().chooseRoundRobinAfterFiltering(lb.getAllServers(), key);
- return server.isPresent() ? (Server)server.get() : null;
- }
- }
再看看它的chooseRoundRobinAfterFiltering()方法是如何實現(xiàn)的
- public Optional<Server> chooseRoundRobinAfterFiltering(List<Server> servers, Object loadBalancerKey) {
- List<Server> eligible = this.getEligibleServers(servers, loadBalancerKey);
- return eligible.size() == 0 ? Optional.absent() : Optional.of(eligible.get(this.incrementAndGetModulo(eligible.size())));
- }
是這樣的,先通過this.getEligibleServers(servers, loadBalancerKey)方法獲取一部分實例,然后判斷這部分實例是否為空,如果不為空則調用eligible.get(this.incrementAndGetModulo(eligible.size())方法從這部分實例里獲取一個服務,點進this.getEligibleServers看
- public List<Server> getEligibleServers(List<Server> servers, Object loadBalancerKey) {
- if (loadBalancerKey == null) {
- return ImmutableList.copyOf(Iterables.filter(servers, this.getServerOnlyPredicate()));
- } else {
- List<Server> results = Lists.newArrayList();
- Iterator var4 = servers.iterator();
- while(var4.hasNext()) {
- Server server = (Server)var4.next();
- //條件滿足
- if (this.apply(new PredicateKey(loadBalancerKey, server))) {
- //添加到集合里
- results.add(server);
- }
- }
- return results;
- }
- }
getEligibleServers方法是根據(jù)this.apply(new PredicateKey(loadBalancerKey, server))進行過濾的,如果滿足,就添加到返回的集合中。符合什么條件才可以進行過濾呢?可以發(fā)現(xiàn),apply是用this調用的,this指的是AbstractServerPredicate(它的類對象),但是,該類是個抽象類,該實例是不存在的,需要子類去實現(xiàn),它的子類在這里暫時不是看了,以后有空再深入學習下,它的子類如下,實現(xiàn)哪個子類,就用什么 方式過濾。
再回到chooseRoundRobinAfterFiltering()方法,剛剛說完它通過 getEligibleServers方法過濾并獲取到一部分實例,然后再通過this.incrementAndGetModulo(eligible.size())方法從這部分實例里選擇一個實例返回,該方法的意思是直接返回下一個整數(shù)(索引值),通過該索引值從返回的實例列表中取得Server實例。
- private int incrementAndGetModulo(int modulo) {
- //當前下標
- int current;
- //下一個下標
- int next;
- do {
- //獲得當前下標值
- current = this.nextIndex.get();
- next = (current + 1) % modulo;
- } while(!this.nextIndex.compareAndSet(current, next) || current >= modulo);
- return current;
- }
源碼擼明白了,再來理一下chooseRoundRobinAfterFiltering()的思路:先通過getEligibleServers()方法獲得一部分服務實例,再從這部分服務實例里拿到當前服務實例的下一個服務對象使用。
小結:通過AbstractServerPredicate的chooseRoundRobinAfterFiltering方法進行過濾,獲取備選的服務實例清單,然后用線性輪詢選擇一個實例,是一個抽象類,過濾策略在AbstractServerPredicate的子類中具體實現(xiàn)
3.RetryRule:是對選定的負載均衡策略加上重試機制,即在一個配置好的時間段內(默認500ms),當選擇實例不成功,則一直嘗試使用subRule的方式選擇一個可用的實例,在調用時間到達閥值的時候還沒找到可用服務,則返回空,如果沒有配置負載策略,默認輪詢(即“4”中的輪詢);
先貼上它的源碼
- public class RetryRule extends AbstractLoadBalancerRule {
- //從這可以看出,默認使用輪詢機制
- IRule subRule = new RoundRobinRule();
- //500秒的閥值
- long maxRetryMillis = 500L;
- //無參構造函數(shù)
- public RetryRule() {
- }
- //使用輪詢機制
- public RetryRule(IRule subRule) {
- this.subRule = (IRule)(subRule != null ? subRule : new RoundRobinRule());
- }
- public RetryRule(IRule subRule, long maxRetryMillis) {
- this.subRule = (IRule)(subRule != null ? subRule : new RoundRobinRule());
- this.maxRetryMillis = maxRetryMillis > 0L ? maxRetryMillis : 500L;
- }
- public void setRule(IRule subRule) {
- this.subRule = (IRule)(subRule != null ? subRule : new RoundRobinRule());
- }
- public IRule getRule() {
- return this.subRule;
- }
- //設置最大耗時時間(閥值),最多重試多久
- public void setMaxRetryMillis(long maxRetryMillis) {
- if (maxRetryMillis > 0L) {
- this.maxRetryMillis = maxRetryMillis;
- } else {
- this.maxRetryMillis = 500L;
- }
- }
- //獲取重試的時間
- public long getMaxRetryMillis() {
- return this.maxRetryMillis;
- }
- //設置負載均衡器,用以獲取服務
- public void setLoadBalancer(ILoadBalancer lb) {
- super.setLoadBalancer(lb);
- this.subRule.setLoadBalancer(lb);
- }
- //通過負載均衡器選擇服務
- public Server choose(ILoadBalancer lb, Object key) {
- long requestTime = System.currentTimeMillis();
- //當前時間+閥值 = 截止時間
- long deadline = requestTime + this.maxRetryMillis;
- Server answer = null;
- answer = this.subRule.choose(key);
- //獲取到服務直接返回
- if ((answer == null || !answer.isAlive()) && System.currentTimeMillis() < deadline) {
- InterruptTask task = new InterruptTask(deadline - System.currentTimeMillis());
- //獲取不到服務的情況下反復獲取
- while(!Thread.interrupted()) {
- answer = this.subRule.choose(key);
- if (answer != null && answer.isAlive() || System.currentTimeMillis() >= deadline) {
- break;
- }
- Thread.yield();
- }
- task.cancel();
- }
- return answer != null && answer.isAlive() ? answer : null;
- }
- public Server choose(Object key) {
- return this.choose(this.getLoadBalancer(), key);
- }
- public void initWithNiwsConfig(IClientConfig clientConfig) {
- }
- }
小結:采用RoundRobinRule的選擇機制,進行反復嘗試,當花費時間超過設置的閾值maxRetryMills時,就返回null
4.RoundRobinRule:輪詢策略,它會從服務清單中按照輪詢的方式依次選擇每個服務實例,它的工作原理是:直接獲取下一個可用實例,如果超過十次沒有獲取到可用的服務實例,則返回空且報出異常信息;
- public class RoundRobinRule extends AbstractLoadBalancerRule {
- private AtomicInteger nextServerCyclicCounter;
- private static final boolean AVAILABLE_ONLY_SERVERS = true;
- private static final boolean ALL_SERVERS = false;
- private static Logger log = LoggerFactory.getLogger(RoundRobinRule.class);
- public RoundRobinRule() {
- this.nextServerCyclicCounter = new AtomicInteger(0);
- }
- public RoundRobinRule(ILoadBalancer lb) {
- this();
- this.setLoadBalancer(lb);
- }
- public Server choose(ILoadBalancer lb, Object key) {
- if (lb == null) {
- log.warn("no load balancer");
- return null;
- } else {
- Server server = null;
- int count = 0;
- while(true) {
- //選擇十次,十次都沒選到可用服務就返回空
- if (server == null && count++ < 10) {
- List<Server> reachableServers = lb.getReachableServers();
- List<Server> allServers = lb.getAllServers();
- int upCount = reachableServers.size();
- int serverCount = allServers.size();
- if (upCount != 0 && serverCount != 0) {
- int nextServerIndex = this.incrementAndGetModulo(serverCount);
- server = (Server)allServers.get(nextServerIndex);
- if (server == null) {
- Thread.yield();
- } else {
- if (server.isAlive() && server.isReadyToServe()) {
- return server;
- }
- server = null;
- }
- continue;
- }
- log.warn("No up servers available from load balancer: " + lb);
- return null;
- }
- if (count >= 10) {
- log.warn("No available alive servers after 10 tries from load balancer: " + lb);
- }
- return server;
- }
- }
- }
- //遞增的形式實現(xiàn)輪詢
- private int incrementAndGetModulo(int modulo) {
- int current;
- int next;
- do {
- current = this.nextServerCyclicCounter.get();
- next = (current + 1) % modulo;
- } while(!this.nextServerCyclicCounter.compareAndSet(current, next));
- return next;
- }
- public Server choose(Object key) {
- return this.choose(this.getLoadBalancer(), key);
- }
- public void initWithNiwsConfig(IClientConfig clientConfig) {
- }
- }
小結:采用線性輪詢機制循環(huán)依次選擇每個服務實例,直到選擇到一個不為空的服務實例或循環(huán)次數(shù)達到10次
它有個子類WeightedResponseTimeRule,WeightedResponseTimeRule是對RoundRobinRule的優(yōu)化。WeightedResponseTimeRule在其父類的基礎上,增加了定時任務這個功能,通過啟動一個定時任務來計算每個服務的權重,然后遍歷服務列表選擇服務實例,從而達到更加優(yōu)秀的分配效果。我們這里把這個類分為三部分:定時任務,計算權值,選擇服務
1)定時任務
- //定時任務
- void initialize(ILoadBalancer lb) {
- if (this.serverWeightTimer != null) {
- this.serverWeightTimer.cancel();
- }
- this.serverWeightTimer = new Timer("NFLoadBalancer-serverWeightTimer-" + this.name, true);
- //開啟一個任務,每30秒執(zhí)行一次
- this.serverWeightTimer.schedule(new WeightedResponseTimeRule.DynamicServerWeightTask(), 0L, (long)this.serverWeightTaskTimerInterval);
- WeightedResponseTimeRule.ServerWeight sw = new WeightedResponseTimeRule.ServerWeight();
- sw.maintainWeights();
- Runtime.getRuntime().addShutdownHook(new Thread(new Runnable() {
- public void run() {
- WeightedResponseTimeRule.logger.info("Stopping NFLoadBalancer-serverWeightTimer-" + WeightedResponseTimeRule.this.name);
- WeightedResponseTimeRule.this.serverWeightTimer.cancel();
- }
- }));
- }
DynamicServerWeightTask()任務如下:
- class DynamicServerWeightTask extends TimerTask {
- DynamicServerWeightTask() {
- }
- public void run() {
- WeightedResponseTimeRule.ServerWeight serverWeight = WeightedResponseTimeRule.this.new ServerWeight();
- try {
- //計算權重
- serverWeight.maintainWeights();
- } catch (Exception var3) {
- WeightedResponseTimeRule.logger.error("Error running DynamicServerWeightTask for {}", WeightedResponseTimeRule.this.name, var3);
- }
- }
- }
小結:調用initialize方法開啟定時任務,再在任務里計算服務的權重
2)計算權重:第一步,先算出所有實例的響應時間;第二步,再根據(jù)所有實例響應時間,算出每個實例的權重
- //用來存儲權重
- private volatile List<Double> accumulatedWeights = new ArrayList();
- //內部類
- class ServerWeight {
- ServerWeight() {
- }
- //該方法用于計算權重
- public void maintainWeights() {
- //獲取負載均衡器
- ILoadBalancer lb = WeightedResponseTimeRule.this.getLoadBalancer();
- if (lb != null) {
- if (WeightedResponseTimeRule.this.serverWeightAssignmentInProgress.compareAndSet(false, true)) {
- try {
- WeightedResponseTimeRule.logger.info("Weight adjusting job started");
- AbstractLoadBalancer nlb = (AbstractLoadBalancer)lb;
- //獲得每個服務實例的信息
- LoadBalancerStats stats = nlb.getLoadBalancerStats();
- if (stats != null) {
- //實例的響應時間
- double totalResponseTime = 0.0D;
- ServerStats ss;
- //累加所有實例的響應時間
- for(Iterator var6 = nlb.getAllServers().iterator(); var6.hasNext(); totalResponseTime += ss.getResponseTimeAvg()) {
- Server server = (Server)var6.next();
- ss = stats.getSingleServerStat(server);
- }
- Double weightSoFar = 0.0D;
- List<Double> finalWeights = new ArrayList();
- Iterator var20 = nlb.getAllServers().iterator();
- //計算負載均衡器所有服務的權重,公式是weightSoFar = weightSoFar + weight-實例平均響應時間
- while(var20.hasNext()) {
- Server serverx = (Server)var20.next();
- ServerStats ssx = stats.getSingleServerStat(serverx);
- double weight = totalResponseTime - ssx.getResponseTimeAvg();
- weightSoFar = weightSoFar + weight;
- finalWeights.add(weightSoFar);
- }
- WeightedResponseTimeRule.this.setWeights(finalWeights);
- return;
- }
- } catch (Exception var16) {
- WeightedResponseTimeRule.logger.error("Error calculating server weights", var16);
- return;
- } finally {
- WeightedResponseTimeRule.this.serverWeightAssignmentInProgress.set(false);
- }
- }
- }
- }
- }
3)選擇服務
- @SuppressWarnings({"RCN_REDUNDANT_NULLCHECK_OF_NULL_VALUE"})
- public Server choose(ILoadBalancer lb, Object key) {
- if (lb == null) {
- return null;
- } else {
- Server server = null;
- while(server == null) {
- List<Double> currentWeights = this.accumulatedWeights;
- if (Thread.interrupted()) {
- return null;
- }
- List<Server> allList = lb.getAllServers();
- int serverCount = allList.size();
- if (serverCount == 0) {
- return null;
- }
- int serverIndex = 0;
- double maxTotalWeight = currentWeights.size() == 0 ? 0.0D : (Double)currentWeights.get(currentWeights.size() - 1);
- if (maxTotalWeight >= 0.001D && serverCount == currentWeights.size()) {
- //生產0到最大權重值的隨機數(shù)
- double randomWeight = this.random.nextDouble() * maxTotalWeight;
- int n = 0;
- //循環(huán)權重區(qū)間
- for(Iterator var13 = currentWeights.iterator(); var13.hasNext(); ++n) {
- //獲取到循環(huán)的數(shù)
- Double d = (Double)var13.next();
- //假如隨機數(shù)在這個區(qū)間內,就拿該索引d服務列表獲取對應的實例
- if (d >= randomWeight) {
- serverIndex = n;
- break;
- }
- }
- server = (Server)allList.get(serverIndex);
- } else {
- server = super.choose(this.getLoadBalancer(), key);
- if (server == null) {
- return server;
- }
- }
- if (server == null) {
- Thread.yield();
- } else {
- if (server.isAlive()) {
- return server;
- }
- server = null;
- }
- }
- return server;
- }
- }
小結:首先生成了一個[0,最大權重值) 區(qū)間內的隨機數(shù),然后遍歷權重列表,假如當前隨機數(shù)在這個區(qū)間內,就通過該下標獲得對應的服務。
以上就是詳解SpringCloud的負載均衡的詳細內容,更多關于SpringCloud 負載均衡的資料請關注服務器之家其它相關文章!
原文鏈接:https://www.cnblogs.com/fengrongriup/p/14505755.html