一、實驗目的
(1)熟練使用Counter類進行統(tǒng)計
(2)掌握pandas中的cut方法進行分類
(3)掌握matplotlib第三方庫,能熟練使用該三方庫庫繪制圖形
二、實驗內(nèi)容
采集到的數(shù)據(jù)集如下表格所示:
三、實驗要求
1.按照性別進行分類,然后分別匯總男生和女生總的收入,并用直方圖進行展示。
2.男生和女生各占公司總人數(shù)的比例,并用扇形圖進行展示。
3.按照年齡進行分類(20-29歲,30-39歲,40-49歲),然后統(tǒng)計出各個年齡段有多少人,并用直方圖進行展示。
import pandas as pd import matplotlib.pyplot as plt from collections import Counter info = [{"name": "E001", "gender": "man", "age": "34", "sales": "123", "income": 350}, {"name": "E002", "gender": "feman", "age": "40", "sales": "114", "income": 450}, {"name": "E003", "gender": "feman", "age": "37", "sales": "135", "income": 169}, {"name": "E004", "gender": "man", "age": "30", "sales": "139", "income": 189}, {"name": "E005", "gender": "feman", "age": "44", "sales": "117", "income": 183}, {"name": "E006", "gender": "man", "age": "36", "sales": "121", "income": 80}, {"name": "E007", "gender": "man", "age": "32", "sales": "133", "income": 166}, {"name": "E008", "gender": "feman", "age": "26", "sales": "140", "income": 120}, {"name": "E009", "gender": "man", "age": "32", "sales": "133", "income": 75}, {"name": "E010", "gender": "man", "age": "36", "sales": "133", "income": 40} ] # 讀取數(shù)據(jù) def get_data(): df = pd.DataFrame(info)#DataFrame是一個以命名列方式組織的分布式數(shù)據(jù)集 df[["age"]] = df[["age"]].astype(int) # 數(shù)據(jù)類型轉(zhuǎn)為int df[["sales"]] = df[["sales"]].astype(int) # 數(shù)據(jù)類型轉(zhuǎn)為int return df def group_by_gender(df): var = df.groupby("gender").sales.sum()#groupby將元素通過函數(shù)生成相應的Key,數(shù)據(jù)就轉(zhuǎn)化為Key-Value格式,之后將Key相同的元素分為一組 fig = plt.figure() ax1 = fig.add_subplot(211)#2*1個網(wǎng)格,1個子圖 ax1.set_xlabel("Gender") # x軸標簽 ax1.set_ylabel("Sum of Sales") # y軸標簽 ax1.set_title("Gender wise Sum of Sales") # 設置圖標標題 var.plot(kind="bar") plt.show() # 顯示 def group_by_age(df): age_list = [20, 30, 40, 50] res = pd.cut(df["age"], age_list, right=False) count_res = pd.value_counts(res) df_count_res = pd.DataFrame(count_res) print(df_count_res) plt.hist(df["age"], bins=age_list, alpha=0.7) # age_list 根據(jù)年齡段統(tǒng)計 # 顯示橫軸標簽 plt.xlabel("nums") # 顯示縱軸標簽 plt.ylabel("ages") # 顯示圖標題 plt.title("pic") plt.show() def gender_count(df): res = df["gender"].value_counts() df_res = pd.DataFrame(res) label_list = df_res.index plt.axis("equal") plt.pie(df_res["gender"], labels=label_list, autopct="%1.1f%%", shadow=True, # 設置陰影 explode=[0, 0.1]) # 0 :扇形不分離,0.1:分離0.1單位 plt.title("gender ratio") plt.show() print(df_res) print(label_list) if __name__ == "__main__": data = get_data() group_by_gender(data) gender_count(data) group_by_age(data)
到此這篇關于python數(shù)據(jù)分析之員工個人信息可視化的文章就介紹到這了,更多相關python員工信息可視化內(nèi)容請搜索服務器之家以前的文章或繼續(xù)瀏覽下面的相關文章希望大家以后多多支持服務器之家!
原文鏈接:https://blog.csdn.net/liarfeelings/article/details/116013798