一区二区三区在线-一区二区三区亚洲视频-一区二区三区亚洲-一区二区三区午夜-一区二区三区四区在线视频-一区二区三区四区在线免费观看

腳本之家,腳本語言編程技術及教程分享平臺!
分類導航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服務器之家 - 腳本之家 - Python - 對Keras自帶Loss Function的深入研究

對Keras自帶Loss Function的深入研究

2021-11-12 12:57Forskamse Python

這篇文章主要介紹了對Keras自帶Loss Function的深入研究,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教

本文研究Keras自帶的幾個常用的Loss Function。

1. categorical_crossentropy VS. sparse_categorical_crossentropy

對Keras自帶Loss Function的深入研究

對Keras自帶Loss Function的深入研究

注意到二者的主要差別在于輸入是否為integer tensor。在文檔中,我們還可以找到關于二者如何選擇的描述:

對Keras自帶Loss Function的深入研究

解釋一下這里的Integer target 與 Categorical target,實際上Integer target經過獨熱編碼就變成了Categorical target,舉例說明:

(類別數5)
Integer target: [1,2,4]
Categorical target: [[0. 1. 0. 0. 0.]
					 [0. 0. 1. 0. 0.]
					 [0. 0. 0. 0. 1.]]

在Keras中提供了to_categorical方法來實現二者的轉化:

from keras.utils import to_categorical
categorical_labels = to_categorical(int_labels, num_classes=None)

注意categorical_crossentropy和sparse_categorical_crossentropy的輸入參數output,都是softmax輸出的tensor。我們都知道softmax的輸出服從多項分布,

因此categorical_crossentropy和sparse_categorical_crossentropy應當應用于多分類問題。

我們再看看這兩個的源碼,來驗證一下:

https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/python/keras/backend.py
--------------------------------------------------------------------------------------------------------------------
def categorical_crossentropy(target, output, from_logits=False, axis=-1):
  """Categorical crossentropy between an output tensor and a target tensor.
  Arguments:
      target: A tensor of the same shape as `output`.
      output: A tensor resulting from a softmax
          (unless `from_logits` is True, in which
          case `output` is expected to be the logits).
      from_logits: Boolean, whether `output` is the
          result of a softmax, or is a tensor of logits.
      axis: Int specifying the channels axis. `axis=-1` corresponds to data
          format `channels_last", and `axis=1` corresponds to data format
          `channels_first`.
  Returns:
      Output tensor.
  Raises:
      ValueError: if `axis` is neither -1 nor one of the axes of `output`.
  """
  rank = len(output.shape)
  axis = axis % rank
  # Note: nn.softmax_cross_entropy_with_logits_v2
  # expects logits, Keras expects probabilities.
  if not from_logits:
    # scale preds so that the class probas of each sample sum to 1
    output = output / math_ops.reduce_sum(output, axis, True)
    # manual computation of crossentropy
    epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)
    output = clip_ops.clip_by_value(output, epsilon_, 1. - epsilon_)
    return -math_ops.reduce_sum(target * math_ops.log(output), axis)
  else:
    return nn.softmax_cross_entropy_with_logits_v2(labels=target, logits=output)
--------------------------------------------------------------------------------------------------------------------
def sparse_categorical_crossentropy(target, output, from_logits=False, axis=-1):
  """Categorical crossentropy with integer targets.
  Arguments:
      target: An integer tensor.
      output: A tensor resulting from a softmax
          (unless `from_logits` is True, in which
          case `output` is expected to be the logits).
      from_logits: Boolean, whether `output` is the
          result of a softmax, or is a tensor of logits.
      axis: Int specifying the channels axis. `axis=-1` corresponds to data
          format `channels_last", and `axis=1` corresponds to data format
          `channels_first`.
  Returns:
      Output tensor.
  Raises:
      ValueError: if `axis` is neither -1 nor one of the axes of `output`.
  """
  rank = len(output.shape)
  axis = axis % rank
  if axis != rank - 1:
    permutation = list(range(axis)) + list(range(axis + 1, rank)) + [axis]
    output = array_ops.transpose(output, perm=permutation)
  # Note: nn.sparse_softmax_cross_entropy_with_logits
  # expects logits, Keras expects probabilities.
  if not from_logits:
    epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)
    output = clip_ops.clip_by_value(output, epsilon_, 1 - epsilon_)
    output = math_ops.log(output)
  output_shape = output.shape
  targets = cast(flatten(target), "int64")
  logits = array_ops.reshape(output, [-1, int(output_shape[-1])])
  res = nn.sparse_softmax_cross_entropy_with_logits(
      labels=targets, logits=logits)
  if len(output_shape) >= 3:
    # If our output includes timesteps or spatial dimensions we need to reshape
    return array_ops.reshape(res, array_ops.shape(output)[:-1])
  else:
    return res

categorical_crossentropy計算交叉熵時使用的是nn.softmax_cross_entropy_with_logits_v2( labels=targets, logits=logits),而sparse_categorical_crossentropy使用的是nn.sparse_softmax_cross_entropy_with_logits( labels=targets, logits=logits),二者本質并無區別,只是對輸入參數logits的要求不同,v2要求的是logits與labels格式相同(即元素也是獨熱的),而sparse則要求logits的元素是個數值,與上面Integer format和Categorical format的對比含義類似。

綜上所述,categorical_crossentropy和sparse_categorical_crossentropy只不過是輸入參數target類型上的區別,其loss的計算在本質上沒有區別,就是交叉熵;二者是針對多分類(Multi-class)任務的。

2. Binary_crossentropy

對Keras自帶Loss Function的深入研究

二元交叉熵,從名字中我們可以看出,這個loss function可能是適用于二分類的。文檔中并沒有詳細說明,那么直接看看源碼吧:

https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/python/keras/backend.py
--------------------------------------------------------------------------------------------------------------------
def binary_crossentropy(target, output, from_logits=False):
  """Binary crossentropy between an output tensor and a target tensor.
  Arguments:
      target: A tensor with the same shape as `output`.
      output: A tensor.
      from_logits: Whether `output` is expected to be a logits tensor.
          By default, we consider that `output`
          encodes a probability distribution.
  Returns:
      A tensor.
  """
  # Note: nn.sigmoid_cross_entropy_with_logits
  # expects logits, Keras expects probabilities.
  if not from_logits:
    # transform back to logits
    epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)
    output = clip_ops.clip_by_value(output, epsilon_, 1 - epsilon_)
    output = math_ops.log(output / (1 - output))
  return nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output)

可以看到源碼中計算使用了nn.sigmoid_cross_entropy_with_logits,熟悉tensorflow的應該比較熟悉這個損失函數了,它可以用于簡單的二分類,也可以用于多標簽任務,而且應用廣泛,在樣本合理的情況下(如不存在類別不均衡等問題)的情況下,通常可以直接使用。

補充:keras自定義loss function的簡單方法

首先看一下Keras中我們常用到的目標函數(如mse,mae等)是如何定義的

from keras import backend as K
def mean_squared_error(y_true, y_pred):
    return K.mean(K.square(y_pred - y_true), axis=-1)
def mean_absolute_error(y_true, y_pred):
    return K.mean(K.abs(y_pred - y_true), axis=-1)
def mean_absolute_percentage_error(y_true, y_pred):
    diff = K.abs((y_true - y_pred) / K.clip(K.abs(y_true), K.epsilon(), np.inf))
    return 100. * K.mean(diff, axis=-1)
def categorical_crossentropy(y_true, y_pred):
    """Expects a binary class matrix instead of a vector of scalar classes.
    """
    return K.categorical_crossentropy(y_pred, y_true)
def sparse_categorical_crossentropy(y_true, y_pred):
    """expects an array of integer classes.
    Note: labels shape must have the same number of dimensions as output shape.
    If you get a shape error, add a length-1 dimension to labels.
    """
    return K.sparse_categorical_crossentropy(y_pred, y_true)
def binary_crossentropy(y_true, y_pred):
    return K.mean(K.binary_crossentropy(y_pred, y_true), axis=-1)
def kullback_leibler_divergence(y_true, y_pred):
    y_true = K.clip(y_true, K.epsilon(), 1)
    y_pred = K.clip(y_pred, K.epsilon(), 1)
    return K.sum(y_true * K.log(y_true / y_pred), axis=-1)
def poisson(y_true, y_pred):
    return K.mean(y_pred - y_true * K.log(y_pred + K.epsilon()), axis=-1)
def cosine_proximity(y_true, y_pred):
    y_true = K.l2_normalize(y_true, axis=-1)
    y_pred = K.l2_normalize(y_pred, axis=-1)
    return -K.mean(y_true * y_pred, axis=-1)

所以仿照以上的方法,可以自己定義特定任務的目標函數。比如:定義預測值與真實值的差

from keras import backend as K
def new_loss(y_true,y_pred):
    return K.mean((y_pred-y_true),axis = -1)

然后,應用你自己定義的目標函數進行編譯

from keras import backend as K
def my_loss(y_true,y_pred):
    return K.mean((y_pred-y_true),axis = -1)
model.compile(optimizer=optimizers.RMSprop(lr),loss=my_loss,
metrics=["accuracy"])

以上為個人經驗,希望能給大家一個參考,也希望大家多多支持服務器之家。

原文鏈接:https://forskamse.blog.csdn.net/article/details/89426537

延伸 · 閱讀

精彩推薦
主站蜘蛛池模板: 波多洁野衣一二区三区 | 色花堂中文字幕98堂网址 | 午夜小视频免费观看 | 欧美ay | 乌克兰粉嫩摘花第一次 | 亚洲网站大全 | 国产成年人在线观看 | 亚洲国产一区 | 高清在线一区二区 | 好爽好紧小雪别夹小说 | 三级无删减高清在线影院 | 韩国三级 720p | av中文字幕在线 | 玩高中女同桌肉色短丝袜脚文 | 欧美男男gaygayxxx | 女人日男人 | bt7086新片速递亚洲最新合集 | 亚洲精品久久久久69影院 | 手机在线观看网站免费视频 | 9色视频在线观看 | gogort99人体专业网站 | 成人精品一区久久久久 | 免费观看一级欧美在线视频 | 国产一区二区三区丶四区 | chinese踩踏调教vk | 国产99区 | 国产精品一久久香蕉产线看 | 亚洲国产欧美在线人成 | 欧美性受xxxx88喷潮 | 欧美四区 | 国产成+人+亚洲+欧美综合 | 亚飞与亚基高清国语在线观看 | 欧美做受 | 韩国激情网 | 成人国产精品一级毛片视频 | 国产精品嫩草影院一二三区入口 | 91国内精品线免费播放 | 国产福利在线观看第二区 | 2019理论韩国理论中文 | 嗯啊在线观看免费影院 | 欧美精品一区二区三区久久 |