本文實例為大家分享了python自動計算圖像數據集的RGB均值,供大家參考,具體內容如下
圖像數據集往往要進行去均值,以保證更快的收斂。
代碼:
創建一個mean.py,寫入如下代碼。修改路徑即可使用
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
|
''' qhy 2018.12.3 ''' import os import numpy as np import cv2 ims_path = 'C:/Users/my/Desktop/JPEGImages/' # 圖像數據集的路徑 ims_list = os.listdir(ims_path) R_means = [] G_means = [] B_means = [] for im_list in ims_list: im = cv2.imread(ims_path + im_list) #extrect value of diffient channel im_R = im[:,:, 0 ] im_G = im[:,:, 1 ] im_B = im[:,:, 2 ] #count mean for every channel im_R_mean = np.mean(im_R) im_G_mean = np.mean(im_G) im_B_mean = np.mean(im_B) #save single mean value to a set of means R_means.append(im_R_mean) G_means.append(im_G_mean) B_means.append(im_B_mean) print ( '圖片:{} 的 RGB平均值為 \n[{},{},{}]' . format (im_list,im_R_mean,im_G_mean,im_B_mean) ) #three sets into a large set a = [R_means,G_means,B_means] mean = [ 0 , 0 , 0 ] #count the sum of different channel means mean[ 0 ] = np.mean(a[ 0 ]) mean[ 1 ] = np.mean(a[ 1 ]) mean[ 2 ] = np.mean(a[ 2 ]) print ( '數據集的BGR平均值為\n[{},{},{}]' . format ( mean[ 0 ],mean[ 1 ],mean[ 2 ]) ) #cv.imread()讀取Img時候將rgb轉換為了bgr,謝謝taylover-pei的修正。 |
終端運行: python mean.py
結果示例如下:
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持服務器之家。
原文鏈接:https://blog.csdn.net/gusui7202/article/details/84751598