前言:Java8之后新增挺多新東西,在網上找了些相關資料,關于HashMap在自己被血虐之后痛定思痛決定整理一下相關知識方便自己看。
HashMap的存儲結構如圖:一個桶(bucket)上的節點多于8個則存儲結構是紅黑樹,小于8個是單向鏈表。
1:HashMap的一些屬性
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
public class HashMap<k,v> extends AbstractMap<k,v> implements Map<k,v>, Cloneable, Serializable { private static final long serialVersionUID = 362498820763181265L; // 默認的初始容量是16 static final int DEFAULT_INITIAL_CAPACITY = 1 << 4 ; // 最大容量 static final int MAXIMUM_CAPACITY = 1 << 30 ; // 默認的填充因子(以前的版本也有叫加載因子的) static final float DEFAULT_LOAD_FACTOR = 0 .75f; // 這是一個閾值,當桶(bucket)上的鏈表數大于這個值時會轉成紅黑樹,put方法的代碼里有用到 static final int TREEIFY_THRESHOLD = 8 ; // 也是閾值同上一個相反,當桶(bucket)上的鏈表數小于這個值時樹轉鏈表 static final int UNTREEIFY_THRESHOLD = 6 ; // 看源碼注釋里說是:樹的最小的容量,至少是 4 x TREEIFY_THRESHOLD = 32 然后為了避免(resizing 和 treeification thresholds) 設置成64 static final int MIN_TREEIFY_CAPACITY = 64 ; // 存儲元素的數組,總是2的倍數 transient Node<k,v>[] table; transient Set<map.entry<k,v>> entrySet; // 存放元素的個數,注意這個不等于數組的長度。 transient int size; // 每次擴容和更改map結構的計數器 transient int modCount; // 臨界值 當實際大小(容量*填充因子)超過臨界值時,會進行擴容 int threshold; // 填充因子 final float loadFactor; |
2:HashMap的構造方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
// 指定初始容量和填充因子的構造方法 public HashMap( int initialCapacity, float loadFactor) { // 指定的初始容量非負 if (initialCapacity < 0 ) throw new IllegalArgumentException(Illegal initial capacity: + initialCapacity); // 如果指定的初始容量大于最大容量,置為最大容量 if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; // 填充比為正 if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException(Illegal load factor: + loadFactor); this .loadFactor = loadFactor; // 指定容量后,tableSizeFor方法計算出臨界值,put數據的時候如果超出該值就會擴容,該值肯定也是2的倍數 // 指定的初始容量沒有保存下來,只用來生成了一個臨界值 this .threshold = tableSizeFor(initialCapacity); } // 該方法保證總是返回大于cap并且是2的倍數的值,比如傳入999 返回1024 static final int tableSizeFor( int cap) { int n = cap - 1 ; // 向右做無符號位移 n |= n >>> 1 ; n |= n >>> 2 ; n |= n >>> 4 ; n |= n >>> 8 ; n |= n >>> 16 ; // 三目運算符的嵌套 return (n < 0 ) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1 ; } //構造函數2 public HashMap( int initialCapacity) { this (initialCapacity, DEFAULT_LOAD_FACTOR); } //構造函數3 public HashMap() { this .loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted } |
3:get和put的時候確定元素在數組中的位置
1
2
3
4
|
static final int hash(Object key) { int h; return (key == null ) ? 0 : (h = key.hashCode()) ^ (h >>> 16 ); } |
要確定位置
第一步:首先是要計算key的hash碼,是一個int類型數字。那后面的 h >>> 16 源碼注釋的說法是:為了避免hash碰撞(hash collisons)將高位分散到低位上了,這是綜合考慮了速度,性能等各方面因素之后做出的。
第二步: h是hash碼,length是上面Node[]數組的長度,做與運算 h & (length-1)。由于length是2的倍數-1后它的二進制碼都是1而1與上其他數的結果可能是0也可能是1,這樣保證運算后的均勻性。也就是hash方法保證了結果的均勻性,這點非常重要,會極大的影響HashMap的put和get性能。看下圖對比:
圖3.1是非對稱的hash結果
圖3.2是均衡的hash結果
這兩個圖的數據不是很多,如果鏈表長度超過8個會轉成紅黑樹。那個時候看著會更明顯,jdk8之前一直是鏈表,鏈表查詢的復雜度是O(n)而紅黑樹由于其自身的特點,查詢的復雜度是O(log(n))。如果hash的結果不均勻會極大影響操作的復雜度。相關的知識這里有一個<a href=”http://blog.chinaunix.net/uid-26575352-id-3061918.html”>紅黑樹基礎知識博客 </a>網上還有個例子來驗證:自定義了一個對象來做key,調整hashCode()方法來看put值得時間
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
public class MutableKeyTest { public static void main(String args[]){ class MyKey { Integer i; public void setI(Integer i) { this .i = i; } public MyKey(Integer i) { this .i = i; } @Override public int hashCode() { // 如果返回1 // return 1 return i; } // object作為key存map里,必須實現equals方法 @Override public boolean equals(Object obj) { if (obj instanceof MyKey) { return i.equals(((MyKey)obj).i); } else { return false ; } } } // 我機器配置不高,25000的話正常情況27毫秒,可以用2500萬試試,如果hashCode()方法返回1的話,250萬就卡死 Map<MyKey,String> map = new HashMap<>( 25000 , 1 ); Date begin = new Date(); for ( int i = 0 ; i < 20000 ; i++){ map.put( new MyKey(i), "test " + i); } Date end = new Date(); System.out.println( "時間(ms) " + (end.getTime() - begin.getTime())); |
4:get方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
public V get(Object key) { Node<k,v> e; return (e = getNode(hash(key), key)) == null ? null : e.value; } final Node<k,v> getNode( int hash, Object key) { Node<k,v>[] tab; Node<k,v> first, e; int n; K k; // hash & (length-1)得到紅黑樹的樹根位置或者是鏈表的表頭 if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1 ) & hash]) != null ) { if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; if ((e = first.next) != null ) { // 如果是樹,遍歷紅黑樹復雜度是O(log(n)),得到節點值 if (first instanceof TreeNode) return ((TreeNode<k,v>)first).getTreeNode(hash, key); // else是鏈表結構 do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null ); } } return null ; } |
5 :put方法,put的時候根據 h & (length – 1) 定位到那個桶然后看是紅黑樹還是鏈表再putVal
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
public V put(K key, V value) { return putVal(hash(key), key, value, false , true ); } final V putVal( int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<k,v>[] tab; Node<k,v> p; int n, i; // 如果tab為空或長度為0,則分配內存resize() if ((tab = table) == null || (n = tab.length) == 0 ) n = (tab = resize()).length; // (n - 1) & hash找到put位置,如果為空,則直接put if ((p = tab[i = (n - 1 ) & hash]) == null ) tab[i] = newNode(hash, key, value, null ); else { Node<k,v> e; K k; // 第一節節點hash值同,且key值與插入key相同 if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k)))) e = p; else if (p instanceof TreeNode) // 紅黑樹的put方法比較復雜,putVal之后還要遍歷整個樹,必要的時候修改值來保證紅黑樹的特點 e = ((TreeNode<k,v>)p).putTreeVal( this , tab, hash, key, value); else { // 鏈表 for ( int binCount = 0 ; ; ++binCount) { if ((e = p.next) == null ) { // e為空,表示已到表尾也沒有找到key值相同節點,則新建節點 p.next = newNode(hash, key, value, null ); // 新增節點后如果節點個數到達閾值,則將鏈表轉換為紅黑樹 if (binCount >= TREEIFY_THRESHOLD - 1 ) // -1 for 1st treeifyBin(tab, hash); break ; } // 容許空key空value if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k)))) break ; p = e; } } // 更新hash值和key值均相同的節點Value值 if (e != null ) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null ) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null ; } |
6:resize方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
|
final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; int oldCap = (oldTab == null ) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0 ; if (oldCap > 0 ) { if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } // 這一句比較重要,可以看出每次擴容是2倍 else if ((newCap = oldCap << 1 ) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1 ; // double threshold } else if (oldThr > 0 ) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = ( int )(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0 ) { float ft = ( float )newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < ( float )MAXIMUM_CAPACITY ? ( int )ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings ({ "rawtypes" , "unchecked" }) Node<K,V>[] newTab = (Node<K,V>[]) new Node[newCap]; table = newTab; if (oldTab != null ) { for ( int j = 0 ; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null ) { oldTab[j] = null ; if (e.next == null ) newTab[e.hash & (newCap - 1 )] = e; else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split( this , newTab, j, oldCap); else { // preserve order Node<K,V> loHead = null , loTail = null ; Node<K,V> hiHead = null , hiTail = null ; Node<K,V> next; do { next = e.next; if ((e.hash & oldCap) == 0 ) { if (loTail == null ) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null ) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null ); if (loTail != null ) { loTail.next = null ; newTab[j] = loHead; } if (hiTail != null ) { hiTail.next = null ; newTab[j + oldCap] = hiHead; } } } } } return newTab; } |
以上所述是小編給大家介紹的Java8 HashMap的實現原理分析的相關知識,希望對大家有所幫助!