以讀取VOC2012語義分割數(shù)據(jù)集為例,具體見代碼注釋:
VocDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
|
from PIL import Image import torch import torch.utils.data as data import numpy as np import os import torchvision import torchvision.transforms as transforms import time #VOC數(shù)據(jù)集分類對(duì)應(yīng)顏色標(biāo)簽 VOC_COLORMAP = [[ 0 , 0 , 0 ], [ 128 , 0 , 0 ], [ 0 , 128 , 0 ], [ 128 , 128 , 0 ], [ 0 , 0 , 128 ], [ 128 , 0 , 128 ], [ 0 , 128 , 128 ], [ 128 , 128 , 128 ], [ 64 , 0 , 0 ], [ 192 , 0 , 0 ], [ 64 , 128 , 0 ], [ 192 , 128 , 0 ], [ 64 , 0 , 128 ], [ 192 , 0 , 128 ], [ 64 , 128 , 128 ], [ 192 , 128 , 128 ], [ 0 , 64 , 0 ], [ 128 , 64 , 0 ], [ 0 , 192 , 0 ], [ 128 , 192 , 0 ], [ 0 , 64 , 128 ]] #顏色標(biāo)簽空間轉(zhuǎn)到序號(hào)標(biāo)簽空間,就他媽這里浪費(fèi)巨量的時(shí)間,這里還他媽的有問題 def voc_label_indices(colormap, colormap2label): """Assign label indices for Pascal VOC2012 Dataset.""" idx = ((colormap[:, :, 2 ] * 256 + colormap[ :, :, 1 ]) * 256 + colormap[:, :, 0 ]) #out = np.empty(idx.shape, dtype = np.int64) out = colormap2label[idx] out = out.astype(np.int64) #數(shù)據(jù)類型轉(zhuǎn)換 end = time.time() return out class MyDataset(data.Dataset): #創(chuàng)建自定義的數(shù)據(jù)讀取類 def __init__( self , root, is_train, crop_size = ( 320 , 480 )): self .rgb_mean = ( 0.485 , 0.456 , 0.406 ) self .rgb_std = ( 0.229 , 0.224 , 0.225 ) self .root = root self .crop_size = crop_size images = [] #創(chuàng)建空列表存文件名稱 txt_fname = '%s/ImageSets/Segmentation/%s' % (root, 'train.txt' if is_train else 'val.txt' ) with open (txt_fname, 'r' ) as f: self .images = f.read().split() #數(shù)據(jù)名稱整理 self .files = [] for name in self .images: img_file = os.path.join( self .root, "JPEGImages/%s.jpg" % name) label_file = os.path.join( self .root, "SegmentationClass/%s.png" % name) self .files.append({ "img" : img_file, "label" : label_file, "name" : name }) self .colormap2label = np.zeros( 256 * * 3 ) #整個(gè)循環(huán)的意思就是將顏色標(biāo)簽映射為單通道的數(shù)組索引 for i, cm in enumerate (VOC_COLORMAP): self .colormap2label[(cm[ 2 ] * 256 + cm[ 1 ]) * 256 + cm[ 0 ]] = i #按照索引讀取每個(gè)元素的具體內(nèi)容 def __getitem__( self , index): datafiles = self .files[index] name = datafiles[ "name" ] image = Image. open (datafiles[ "img" ]) label = Image. open (datafiles[ "label" ]).convert( 'RGB' ) #打開的是PNG格式的圖片要轉(zhuǎn)到rgb的格式下,不然結(jié)果會(huì)比較要命 #以圖像中心為中心截取固定大小圖像,小于固定大小的圖像則自動(dòng)填0 imgCenterCrop = transforms.Compose([ transforms.CenterCrop( self .crop_size), transforms.ToTensor(), transforms.Normalize( self .rgb_mean, self .rgb_std), #圖像數(shù)據(jù)正則化 ]) labelCenterCrop = transforms.CenterCrop( self .crop_size) cropImage = imgCenterCrop(image) croplabel = labelCenterCrop(label) croplabel = torch.from_numpy(np.array(croplabel)). long () #把標(biāo)簽數(shù)據(jù)類型轉(zhuǎn)為torch #將顏色標(biāo)簽圖轉(zhuǎn)為序號(hào)標(biāo)簽圖 mylabel = voc_label_indices(croplabel, self .colormap2label) return cropImage,mylabel #返回圖像數(shù)據(jù)長度 def __len__( self ): return len ( self .files) |
Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
|
import matplotlib.pyplot as plt import torch.utils.data as data import torchvision.transforms as transforms import numpy as np from PIL import Image from VocDataset import MyDataset #VOC數(shù)據(jù)集分類對(duì)應(yīng)顏色標(biāo)簽 VOC_COLORMAP = [[ 0 , 0 , 0 ], [ 128 , 0 , 0 ], [ 0 , 128 , 0 ], [ 128 , 128 , 0 ], [ 0 , 0 , 128 ], [ 128 , 0 , 128 ], [ 0 , 128 , 128 ], [ 128 , 128 , 128 ], [ 64 , 0 , 0 ], [ 192 , 0 , 0 ], [ 64 , 128 , 0 ], [ 192 , 128 , 0 ], [ 64 , 0 , 128 ], [ 192 , 0 , 128 ], [ 64 , 128 , 128 ], [ 192 , 128 , 128 ], [ 0 , 64 , 0 ], [ 128 , 64 , 0 ], [ 0 , 192 , 0 ], [ 128 , 192 , 0 ], [ 0 , 64 , 128 ]] root = '../data/VOCdevkit/VOC2012' train_data = MyDataset(root, True ) trainloader = data.DataLoader(train_data, 4 ) #從數(shù)據(jù)集中拿出一個(gè)批次的數(shù)據(jù) for i, data in enumerate (trainloader): getimgs, labels = data img = transforms.ToPILImage()(getimgs[ 0 ]) labels = labels.numpy() #tensor轉(zhuǎn)numpy labels = labels[ 0 ] #獲得批次標(biāo)簽集中的一張標(biāo)簽圖像 labels = labels.transpose(( 1 , 0 )) #數(shù)組維度切換,將第1維換到第0維,第0維換到第1維 ##將單通道索引標(biāo)簽圖片映射回顏色標(biāo)簽圖片 newIm = Image.new( 'RGB' , ( 480 , 320 )) #創(chuàng)建一張與標(biāo)簽大小相同的圖片,用以顯示標(biāo)簽所對(duì)應(yīng)的顏色 for i in range ( 0 , 480 ): for j in range ( 0 , 320 ): sele = labels[i][j] #取得坐標(biāo)點(diǎn)對(duì)應(yīng)像素的值 newIm.putpixel((i, j), ( int (VOC_COLORMAP[sele][ 0 ]), int (VOC_COLORMAP[sele][ 1 ]), int (VOC_COLORMAP[sele][ 2 ]))) #顯示圖像和標(biāo)簽 plt.figure( "image" ) ax1 = plt.subplot( 1 , 2 , 1 ) ax2 = plt.subplot( 1 , 2 , 2 ) plt.sca(ax1) plt.imshow(img) plt.sca(ax2) plt.imshow(newIm) plt.show() |
以上這篇Pytorch 實(shí)現(xiàn)數(shù)據(jù)集自定義讀取就是小編分享給大家的全部內(nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持服務(wù)器之家。
原文鏈接:https://blog.csdn.net/weixinhum/article/details/86232734