在PyTorch中可以方便的驗證SoftMax交叉熵損失和對輸入梯度的計算
關于softmax_cross_entropy求導的過程,可以參考HERE
示例:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
# -*- coding: utf-8 -*- import torch import torch.autograd as autograd from torch.autograd import Variable import torch.nn.functional as F import torch.nn as nn import numpy as np # 對data求梯度, 用于反向傳播 data = Variable(torch.FloatTensor([[ 1.0 , 2.0 , 3.0 ], [ 1.0 , 2.0 , 3.0 ], [ 1.0 , 2.0 , 3.0 ]]), requires_grad = True ) # 多分類標簽 one-hot格式 label = Variable(torch.zeros(( 3 , 3 ))) label[ 0 , 2 ] = 1 label[ 1 , 1 ] = 1 label[ 2 , 0 ] = 1 print (label) # for batch loss = mean( -sum(Pj*logSj) ) # for one : loss = -sum(Pj*logSj) loss = torch.mean( - torch. sum (label * torch.log(F.softmax(data, dim = 1 )), dim = 1 )) loss.backward() print (loss, data.grad) |
輸出:
1
2
3
4
5
6
7
|
tensor([[ 0. , 0. , 1. ], [ 0. , 1. , 0. ], [ 1. , 0. , 0. ]]) # loss:損失 和 input's grad:輸入的梯度 tensor( 1.4076 ) tensor([[ 0.0300 , 0.0816 , - 0.1116 ], [ 0.0300 , - 0.2518 , 0.2217 ], [ - 0.3033 , 0.0816 , 0.2217 ]]) |
注意:
對于單輸入的loss 和 grad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
data = Variable(torch.FloatTensor([[ 1.0 , 2.0 , 3.0 ]]), requires_grad = True ) label = Variable(torch.zeros(( 1 , 3 ))) #分別令不同索引位置label為1 label[ 0 , 0 ] = 1 # label[0, 1] = 1 # label[0, 2] = 1 print (label) # for batch loss = mean( -sum(Pj*logSj) ) # for one : loss = -sum(Pj*logSj) loss = torch.mean( - torch. sum (label * torch.log(F.softmax(data, dim = 1 )), dim = 1 )) loss.backward() print (loss, data.grad) |
其輸出:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
# 第一組: lable: tensor([[ 1. , 0. , 0. ]]) loss: tensor( 2.4076 ) grad: tensor([[ - 0.9100 , 0.2447 , 0.6652 ]]) # 第二組: lable: tensor([[ 0. , 1. , 0. ]]) loss: tensor( 1.4076 ) grad: tensor([[ 0.0900 , - 0.7553 , 0.6652 ]]) # 第三組: lable: tensor([[ 0. , 0. , 1. ]]) loss: tensor( 0.4076 ) grad: tensor([[ 0.0900 , 0.2447 , - 0.3348 ]]) """ 解釋: 對于輸入數據 tensor([[ 1., 2., 3.]]) softmax之后的結果如下 tensor([[ 0.0900, 0.2447, 0.6652]]) 交叉熵求解梯度推導公式可知 s[0, 0]-1, s[0, 1]-1, s[0, 2]-1 是上面三組label對應的輸入數據梯度 """ |
pytorch提供的softmax, 和log_softmax 關系
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
# 官方提供的softmax實現 In[ 2 ]: import torch ...: import torch.autograd as autograd ...: from torch.autograd import Variable ...: import torch.nn.functional as F ...: import torch.nn as nn ...: import numpy as np In[ 3 ]: data = Variable(torch.FloatTensor([[ 1.0 , 2.0 , 3.0 ]]), requires_grad = True ) In[ 4 ]: data Out[ 4 ]: tensor([[ 1. , 2. , 3. ]]) In[ 5 ]: e = torch.exp(data) In[ 6 ]: e Out[ 6 ]: tensor([[ 2.7183 , 7.3891 , 20.0855 ]]) In[ 7 ]: s = torch. sum (e, dim = 1 ) In[ 8 ]: s Out[ 8 ]: tensor([ 30.1929 ]) In[ 9 ]: softmax = e / s In[ 10 ]: softmax Out[ 10 ]: tensor([[ 0.0900 , 0.2447 , 0.6652 ]]) In[ 11 ]: # 等同于 pytorch 提供的 softmax In[ 12 ]: org_softmax = F.softmax(data, dim = 1 ) In[ 13 ]: org_softmax Out[ 13 ]: tensor([[ 0.0900 , 0.2447 , 0.6652 ]]) In[ 14 ]: org_softmax = = softmax # 計算結果相同 Out[ 14 ]: tensor([[ 1 , 1 , 1 ]], dtype = torch.uint8) # 與log_softmax關系 # log_softmax = log(softmax) In[ 15 ]: _log_softmax = torch.log(org_softmax) In[ 16 ]: _log_softmax Out[ 16 ]: tensor([[ - 2.4076 , - 1.4076 , - 0.4076 ]]) In[ 17 ]: log_softmax = F.log_softmax(data, dim = 1 ) In[ 18 ]: log_softmax Out[ 18 ]: tensor([[ - 2.4076 , - 1.4076 , - 0.4076 ]]) |
官方提供的softmax交叉熵求解結果
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
# -*- coding: utf-8 -*- import torch import torch.autograd as autograd from torch.autograd import Variable import torch.nn.functional as F import torch.nn as nn import numpy as np data = Variable(torch.FloatTensor([[ 1.0 , 2.0 , 3.0 ], [ 1.0 , 2.0 , 3.0 ], [ 1.0 , 2.0 , 3.0 ]]), requires_grad = True ) log_softmax = F.log_softmax(data, dim = 1 ) label = Variable(torch.zeros(( 3 , 3 ))) label[ 0 , 2 ] = 1 label[ 1 , 1 ] = 1 label[ 2 , 0 ] = 1 print ( "lable: " , label) # 交叉熵的計算方式之一 loss_fn = torch.nn.NLLLoss() # reduce=True loss.sum/batch & grad/batch # NLLLoss輸入是log_softmax, target是非one-hot格式的label loss = loss_fn(log_softmax, torch.argmax(label, dim = 1 )) loss.backward() print ( "loss: " , loss, "\ngrad: " , data.grad) """ # 交叉熵計算方式二 loss_fn = torch.nn.CrossEntropyLoss() # the target label is NOT an one-hotted #CrossEntropyLoss適用于分類問題的損失函數 #input:沒有softmax過的nn.output, target是非one-hot格式label loss = loss_fn(data, torch.argmax(label, dim=1)) loss.backward() print("loss: ", loss, "\ngrad: ", data.grad) """ """ |
輸出
1
2
3
4
5
6
7
|
lable: tensor([[ 0. , 0. , 1. ], [ 0. , 1. , 0. ], [ 1. , 0. , 0. ]]) loss: tensor( 1.4076 ) grad: tensor([[ 0.0300 , 0.0816 , - 0.1116 ], [ 0.0300 , - 0.2518 , 0.2217 ], [ - 0.3033 , 0.0816 , 0.2217 ]]) |
通過和示例的輸出對比, 發現兩者是一樣的
以上這篇PyTorch的SoftMax交叉熵損失和梯度用法就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持服務器之家。
原文鏈接:https://blog.csdn.net/u010472607/article/details/82705567