1、讀Hive表數(shù)據(jù)
pyspark讀取hive數(shù)據(jù)非常簡單,因?yàn)樗袑iT的接口來讀取,完全不需要像hbase那樣,需要做很多配置,pyspark提供的操作hive的接口,使得程序可以直接使用SQL語句從hive里面查詢需要的數(shù)據(jù),代碼如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
from pyspark.sql import HiveContext,SparkSession _SPARK_HOST = "spark://spark-master:7077" _APP_NAME = "test" spark_session = SparkSession.builder.master(_SPARK_HOST).appName(_APP_NAME).getOrCreate() hive_context = HiveContext(spark_session ) # 生成查詢的SQL語句,這個跟hive的查詢語句一樣,所以也可以加where等條件語句 hive_database = "database1" hive_table = "test" hive_read = "select * from {}.{}" . format (hive_database, hive_table) # 通過SQL語句在hive中查詢的數(shù)據(jù)直接是dataframe的形式 read_df = hive_context.sql(hive_read) |
2 、將數(shù)據(jù)寫入hive表
pyspark寫hive表有兩種方式:
(1)通過SQL語句生成表
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
from pyspark.sql import SparkSession, HiveContext _SPARK_HOST = "spark://spark-master:7077" _APP_NAME = "test" spark = SparkSession.builder.master(_SPARK_HOST).appName(_APP_NAME).getOrCreate() data = [ ( 1 , "3" , "145" ), ( 1 , "4" , "146" ), ( 1 , "5" , "25" ), ( 1 , "6" , "26" ), ( 2 , "32" , "32" ), ( 2 , "8" , "134" ), ( 2 , "8" , "134" ), ( 2 , "9" , "137" ) ] df = spark.createDataFrame(data, [ 'id' , "test_id" , 'camera_id' ]) # method one,default是默認(rèn)數(shù)據(jù)庫的名字,write_test 是要寫到default中數(shù)據(jù)表的名字 df.registerTempTable( 'test_hive' ) sqlContext.sql( "create table default.write_test select * from test_hive" ) |
(2)saveastable的方式
1
2
3
4
5
|
# method two # "overwrite"是重寫表的模式,如果表存在,就覆蓋掉原始數(shù)據(jù),如果不存在就重新生成一張表 # mode("append")是在原有表的基礎(chǔ)上進(jìn)行添加數(shù)據(jù) df.write. format ( "hive" ).mode( "overwrite" ).saveAsTable( 'default.write_test' ) |
tips:
spark用上面幾種方式讀寫hive時(shí),需要在提交任務(wù)時(shí)加上相應(yīng)的配置,不然會報(bào)錯:
spark-submit --conf spark.sql.catalogImplementation=hive test.py
補(bǔ)充知識:PySpark基于SHC框架讀取HBase數(shù)據(jù)并轉(zhuǎn)成DataFrame
一、首先需要將HBase目錄lib下的jar包以及SHC的jar包復(fù)制到所有節(jié)點(diǎn)的Spark目錄lib下
二、修改spark-defaults.conf 在spark.driver.extraClassPath和spark.executor.extraClassPath把上述jar包所在路徑加進(jìn)去
三、重啟集群
四、代碼
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
#/usr/bin/python #-*- coding:utf-8 –*- from pyspark import SparkContext from pyspark.sql import SQLContext,HiveContext,SparkSession from pyspark.sql.types import Row,StringType,StructField,StringType,IntegerType from pyspark.sql.dataframe import DataFrame sc = SparkContext(appName = "pyspark_hbase" ) sql_sc = SQLContext(sc) dep = "org.apache.spark.sql.execution.datasources.hbase" #定義schema catalog = """{ "table":{"namespace":"default", "name":"teacher"}, "rowkey":"key", "columns":{ "id":{"cf":"rowkey", "col":"key", "type":"string"}, "name":{"cf":"teacherInfo", "col":"name", "type":"string"}, "age":{"cf":"teacherInfo", "col":"age", "type":"string"}, "gender":{"cf":"teacherInfo", "col":"gender","type":"string"}, "cat":{"cf":"teacherInfo", "col":"cat","type":"string"}, "tag":{"cf":"teacherInfo", "col":"tag", "type":"string"}, "level":{"cf":"teacherInfo", "col":"level","type":"string"} } }""" df = sql_sc.read.options(catalog = catalog). format (dep).load() print ( '***************************************************************' ) print ( '***************************************************************' ) print ( '***************************************************************' ) df.show() print ( '***************************************************************' ) print ( '***************************************************************' ) print ( '***************************************************************' ) sc.stop() |
五、解釋
數(shù)據(jù)來源參考請本人之前的文章,在此不做贅述
schema定義參考如圖:
六、結(jié)果
以上這篇在python中使用pyspark讀寫Hive數(shù)據(jù)操作就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持服務(wù)器之家。
原文鏈接:https://blog.csdn.net/u011412768/article/details/93426353