本文實例講述了python通過BF算法實現關鍵詞匹配的方法。分享給大家供大家參考。具體實現方法如下:
# -*- coding: UTF-8
# filename BF
import time
"""
t="this is a big apple,this is a big apple,this is a big apple,this is a big apple."
p="apple"
"""
t="為什么叫向量空間模型呢?其實我們可以把每個詞給看成一個維度,而詞的頻率看成其值(有向),即向量,這樣每篇文章的詞及其頻率就構成了一個i維空間圖,兩個文檔的相似度就是兩個空間圖的接近度。假設文章只有兩維的話,那么空間圖就可以畫在一個平面直角坐標系當中,讀者可以假想兩篇只有兩個詞的文章畫圖進行理解。"
p="讀者"
i=0
count=0
start=time.time()
while (i <=len(t)-len(p)):
j=0
while (t[i]==p[j]):
i=i+1
j=j+1
if j==len(p):
break
elif (j==len(p)-1):
count=count+1
else:
i=i+1
j=0
print count
print time.time()-start
算法思想:目標串t與模式串p逐詞比較,若對應位匹配,則進行下一位比較;若不相同,p右移1位,從p的第1位重新開始比較。
算法特點:整體移動方向:可認為在固定的情況下,p從左向右滑動;匹配比較時,從p的最左邊位開始向右逐位與t串中對應位比較。p的滑動距離為1,這導致BF算法匹配效率低(相比其他算法,如:BM,KMP,滑動沒有跳躍)。
該算法的時間復雜度為O(len(t)*len(p)),空間復雜度為O(len(t)+len(p))
希望本文所述對大家的Python程序設計有所幫助。