最短路徑問(wèn)題(python實(shí)現(xiàn))
解決最短路徑問(wèn)題:(如下三種算法)
(1)迪杰斯特拉算法(Dijkstra算法)
(2)弗洛伊德算法(Floyd算法)
(3)SPFA算法
第一種算法:
Dijkstra算法
廣度優(yōu)先搜索解決賦權(quán)有向圖或者無(wú)向圖的單源最短路徑問(wèn)題.是一種貪心的策略
算法的思路
聲明一個(gè)數(shù)組dis來(lái)保存源點(diǎn)到各個(gè)頂點(diǎn)的最短距離和一個(gè)保存已經(jīng)找到了最短路徑的頂點(diǎn)的集合:T,初始時(shí),原點(diǎn)s的路徑權(quán)重被賦為0(dis[s]=0)。若對(duì)于頂點(diǎn)s存在能直接到達(dá)的邊(s,m),則把dis[m]設(shè)為w(s, m),同時(shí)把所有其他(s不能直接到達(dá)的)頂點(diǎn)的路徑長(zhǎng)度設(shè)為無(wú)窮大。初始時(shí),集合T只有頂點(diǎn)s。
然后,從dis數(shù)組選擇最小值,則該值就是源點(diǎn)s到該值對(duì)應(yīng)的頂點(diǎn)的最短路徑,并且把該點(diǎn)加入到T中,OK,此時(shí)完成一個(gè)頂點(diǎn),再看看新加入的頂點(diǎn)是否可以到達(dá)其他頂點(diǎn)并且看看通過(guò)該頂點(diǎn)到達(dá)其他點(diǎn)的路徑長(zhǎng)度是否比源點(diǎn)直接到達(dá)短,如果是,那么就替換這些頂點(diǎn)在dis中的值,然后,又從dis中找出最小值,重復(fù)上述動(dòng)作,直到T中包含了圖的所有頂點(diǎn)。
第二種算法:
Floyd算法
原理:
Floyd算法(弗洛伊德算法)是一種在有向圖中求最短路徑的算法。它是一種求解有向圖中點(diǎn)與點(diǎn)之間最短路徑的算法。
用在擁有負(fù)權(quán)值的有向圖中求解最短路徑(不過(guò)不能包含負(fù)權(quán)回路)
流程:
有向圖中的每一個(gè)節(jié)點(diǎn)X,對(duì)于圖中過(guò)的2點(diǎn)A和B,
如果有Dis(AX)+ Dis(XB)< Dis(AB),那么使得Dis(AB)=Dis(AX)+Dis(XB)。
當(dāng)所有的節(jié)點(diǎn)X遍歷完后,AB的最短路徑就求出來(lái)了。
示例一:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
#-*- coding:utf-8 -*- #python實(shí)現(xiàn)Floyd算法 N = 4 _ = float ( 'inf' ) #無(wú)窮大 graph = [[ 0 , 2 , 6 , 4 ],[ _, 0 , 3 , _],[ 7 , _, 0 , 1 ],[ 5 , _, 12 , 0 ]] path = [[ - 1 , - 1 , - 1 , - 1 ],[ - 1 , - 1 , - 1 , - 1 ],[ - 1 , - 1 , - 1 , - 1 ],[ - 1 , - 1 , - 1 , - 1 ]] #記錄路徑,最后一次經(jīng)過(guò)的點(diǎn) def back_path(path,i,j): #遞歸回溯 while ( - 1 ! = path[i][j]): back_path(path,i,path[i][j]) back_path(path,path[i][j],j) print path[i][j], 14 return ; return ; print "Graph:\n" ,graph for k in range (N): for i in range (N): for j in range (N): if graph[i][j] > graph[i][k] + graph[k][j]: graph[i][j] = graph[i][k] + graph[k][j] path[i][j] = k print "Shortest distance:\n" ,graph print "Path:\n" ,path print "Points pass-by:" for i in range (N): for j in range (N): print "%d -> %d:" % (i,j), back_path(path,i,j) print "\n" , |
示例二:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
|
#!usr/bin/env python#encoding:utf-8 ''' 功能:使用floyd算法求最短路徑距離 ''' import random import time def random_matrix_genetor(vex_num = 10 ): ''' 隨機(jī)圖頂點(diǎn)矩陣生成器 輸入:頂點(diǎn)個(gè)數(shù),即矩陣維數(shù) ''' data_matrix = [] for i in range (vex_num): one_list = [] for j in range (vex_num): one_list.append(random.randint( 1 , 100 )) data_matrix.append(one_list) return data_matrixdef floyd(data_matrix): ''' 輸入:原數(shù)據(jù)矩陣,即:一個(gè)二維數(shù)組 輸出:頂點(diǎn)間距離 ''' dist_matrix = [] path_matrix = [] vex_num = len (data_matrix) for h in range (vex_num): one_list = [ 'N' ] * vex_num path_matrix.append(one_list) dist_matrix.append(one_list) for i in range (vex_num): for j in range (vex_num): dist_matrix = data_matrix path_matrix[i][j] = j for k in range (vex_num): for i in range (vex_num): for j in range (vex_num): if dist_matrix[i][k] = = 'N' or dist_matrix[k][j] = = 'N' : temp = 'N' else : temp = dist_matrix[i][k] + dist_matrix[k][j] if dist_matrix[i][j]>temp: dist_matrix[i][j] = temp path_matrix[i][j] = path_matrix[i][k] return dist_matrix, path_matrixdef main_test_func(vex_num = 10 ): ''' 主測(cè)試函數(shù) ''' data_matrix = random_matrix_genetor(vex_num) dist_matrix, path_matrix = floyd(data_matrix) for i in range (vex_num): for j in range (vex_num): print '頂點(diǎn)' + str (i) + '----->' + '頂點(diǎn)' + str (j) + '最小距離為:' , dist_matrix[i][j] if __name__ = = '__main__' : data_matrix = [[ 'N' , 1 , 'N' , 4 ],[ 1 , 'N' , 2 , 'N' ],[ 'N' , 2 , 'N' , 3 ],[ 4 , 'N' , 3 , 'N' ]] dist_matrix, path_matrix = floyd(data_matrix) print dist_matrix print path_matrix time_list = [] print '------------------------------節(jié)點(diǎn)數(shù)為10測(cè)試情況------------------------------------' start_time0 = time.time() main_test_func( 10 ) end_time0 = time.time() t1 = end_time0 - start_time0 time_list.append(t1) print '節(jié)點(diǎn)數(shù)為10時(shí)耗時(shí)為:' , t1 print '------------------------------節(jié)點(diǎn)數(shù)為100測(cè)試情況------------------------------------' start_time1 = time.time() main_test_func( 100 ) end_time1 = time.time() t2 = end_time1 - start_time1 time_list.append(t2) print '節(jié)點(diǎn)數(shù)為100時(shí)耗時(shí)為:' , t2 print '------------------------------節(jié)點(diǎn)數(shù)為1000測(cè)試情況------------------------------------' start_time1 = time.time() main_test_func( 1000 ) end_time1 = time.time() t3 = end_time1 - start_time1 time_list.append(t3) print '節(jié)點(diǎn)數(shù)為100時(shí)耗時(shí)為:' , t3 print '--------------------------------------時(shí)間消耗情況為:--------------------------------' for one_time in time_list: print one_time |
示例三:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
import numpy as np Max = 100 v_len = 4 edge = np.mat([[ 0 , 1 , Max , 4 ],[ Max , 0 , 9 , 2 ],[ 3 , 5 , 0 , 8 ],[ Max , Max , 6 , 0 ]]) A = edge[:] path = np.zeros((v_len,v_len)) def Folyd(): for i in range (v_len): for j in range (v_len): if (edge[i,j] ! = Max and edge[i,j] ! = 0 ): path[i][j] = i print 'init:' print A, '\n' ,path for a in range (v_len): for b in range (v_len): for c in range (v_len): if (A[b,a] + A[a,c]<A[b,c]): A[b,c] = A[b,a] + A[a,c] path[b][c] = path[a][c] print 'result:' print A, '\n' ,path if __name__ = = "__main__" : Folyd() |
第三種算法:
SPFA算法是求解單源最短路徑問(wèn)題的一種算法,由理查德·貝爾曼(Richard Bellman) 和 萊斯特·福特 創(chuàng)立的。有時(shí)候這種算法也被稱為 Moore-Bellman-Ford 算法,因?yàn)?Edward F. Moore 也為這個(gè)算法的發(fā)展做出了貢獻(xiàn)。它的原理是對(duì)圖進(jìn)行V-1次松弛操作,得到所有可能的最短路徑。
其優(yōu)于迪科斯徹算法的方面是邊的權(quán)值可以為負(fù)數(shù)、實(shí)現(xiàn)簡(jiǎn)單,缺點(diǎn)是時(shí)間復(fù)雜度過(guò)高,高達(dá) O(VE)。但算法可以進(jìn)行若干種優(yōu)化,提高了效率。
思路:
我們用數(shù)組dis記錄每個(gè)結(jié)點(diǎn)的最短路徑估計(jì)值,用鄰接表或鄰接矩陣來(lái)存儲(chǔ)圖G。我們采取的方法是動(dòng)態(tài)逼近法:設(shè)立一個(gè)先進(jìn)先出的隊(duì)列用來(lái)保存待優(yōu)化的結(jié)點(diǎn),優(yōu)化時(shí)每次取出隊(duì)首結(jié)點(diǎn)u,并且用u點(diǎn)當(dāng)前的最短路徑估計(jì)值對(duì)離開(kāi)u點(diǎn)所指向的結(jié)點(diǎn)v進(jìn)行松弛操作,如果v點(diǎn)的最短路徑估計(jì)值有所調(diào)整,且v點(diǎn)不在當(dāng)前的隊(duì)列中,就將v點(diǎn)放入隊(duì)尾。這樣不斷從隊(duì)列中取出結(jié)點(diǎn)來(lái)進(jìn)行松弛操作,直至隊(duì)列空為止。
原文鏈接:https://www.py.cn/jishu/gaoji/19619.html